Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's provide a detailed, step-by-step solution to approximate the solution to the given equation by performing three iterations of successive approximation.
Given the equation:
[tex]$ x^2 - 5x + 1 = \frac{2}{x-1} $[/tex]
We will use an iteration method to approximate a solution. Let's begin with an initial guess from between [tex]\(x = 4\)[/tex] and [tex]\(x = 5\)[/tex] because they are close to each other. Let's use [tex]\(x = 4.5\)[/tex] as our starting point.
Step 1: Initial guess
Start with [tex]\(x = 4.5\)[/tex].
Step 2: Define the function [tex]\(f(x)\)[/tex]
We rearrange the original equation to define a function [tex]\(f(x)\)[/tex] that will be zero at the solution:
[tex]\[ f(x) = x^2 - 5x + 1 - \frac{2}{x-1} \][/tex]
Step 3: Compute the derivative [tex]\(f'(x)\)[/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( x^2 - 5x + 1 - \frac{2}{x-1} \right) \][/tex]
[tex]\[ f'(x) = 2x - 5 + \frac{2}{(x-1)^2} \][/tex]
Step 4: Perform iterations using Newton's method
Using the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
Let’s calculate the next approximations:
Iteration 1:
For [tex]\(x = 4.5\)[/tex],
[tex]\[ f(4.5) = 4.5^2 - 5 \cdot 4.5 + 1 - \frac{2}{4.5 - 1} \][/tex]
[tex]\[ f(4.5) = 20.25 - 22.5 + 1 - \frac{2}{3.5} \][/tex]
[tex]\[ f(4.5) = -1.25 - 0.5714 \][/tex]
[tex]\[ f(4.5) = -1.8214 \][/tex]
[tex]\[ f'(4.5) = 2 \cdot 4.5 - 5 + \frac{2}{(4.5 - 1)^2} \][/tex]
[tex]\[ f'(4.5) = 9 - 5 + \frac{2}{3.5^2} \][/tex]
[tex]\[ f'(4.5) = 4 + \frac{2}{12.25} \][/tex]
[tex]\[ f'(4.5) = 4 + 0.1633 \][/tex]
[tex]\[ f'(4.5) = 4.1633 \][/tex]
Next approximation:
[tex]\[ x_1 = 4.5 - \frac{-1.8214}{4.1633} \][/tex]
[tex]\[ x_1 \approx 4.938 \][/tex]
Iteration 2:
For [tex]\(x \approx 4.938\)[/tex],
[tex]\[ f(4.938) = 4.938^2 - 5 \cdot 4.938 + 1 - \frac{2}{4.938 - 1} \][/tex]
[tex]\[ f(4.938) = 24.3785 - 24.69 + 1 - \frac{2}{3.938} \][/tex]
[tex]\[ f(4.938) = -0.3115 - 0.508 \][/tex]
[tex]\[ f(4.938) = -0.8195 \][/tex]
[tex]\[ f'(4.938) = 2 \cdot 4.938 - 5 + \frac{2}{(4.938 - 1)^2} \][/tex]
[tex]\[ f'(4.938) = 9.876 - 5 + \frac{2}{15.5016} \][/tex]
[tex]\[ f'(4.938) = 4.876 + 0.129 \][/tex]
[tex]\[ f'(4.938) = 5.005 \][/tex]
Next approximation:
[tex]\[ x_2 = 4.938 - \frac{-0.8195}{5.005} \][/tex]
[tex]\[ x_2 \approx 5.102 \][/tex]
Iteration 3:
For [tex]\(x \approx 5.102\)[/tex],
[tex]\[ f(5.102) = 5.102^2 - 5 \cdot 5.102 + 1 - \frac{2}{5.102 - 1} \][/tex]
[tex]\[ f(5.102) = 26.042 - 25.51 + 1 - \frac{2}{4.102} \][/tex]
[tex]\[ f(5.102) = 0.532 - 0.4877 \][/tex]
[tex]\[ f(5.102) = 0.0443 \][/tex]
[tex]\[ f'(5.102) = 2 \cdot 5.102 - 5 + \frac{2}{(5.102 - 1)^2} \][/tex]
[tex]\[ f'(5.102) = 10.204 - 5 + \frac{2}{16.816} \][/tex]
[tex]\[ f'(5.102) = 5.204 + 0.119 \][/tex]
[tex]\[ f'(5.102) = 5.323 \][/tex]
Next approximation:
[tex]\[ x_3 = 5.102 - \frac{0.0443}{5.323} \][/tex]
[tex]\[ x_3 \approx 5.0946 \][/tex]
Step 5: Compare to given options
We now compare [tex]\(x \approx 5.0946\)[/tex] to the given options in their decimal form:
A. [tex]\(\frac{33}{8} \approx 4.125\)[/tex]
B. [tex]\(\frac{65}{16} \approx 4.0625\)[/tex]
C. [tex]\(\frac{79}{16} \approx 4.9375\)[/tex]
D. [tex]\(\frac{39}{8} \approx 4.875\)[/tex]
After comparing, it is evident that the closest option is D.
Therefore, the correct answer is:
D. [tex]\( x \approx \frac{39}{8} \)[/tex]
Given the equation:
[tex]$ x^2 - 5x + 1 = \frac{2}{x-1} $[/tex]
We will use an iteration method to approximate a solution. Let's begin with an initial guess from between [tex]\(x = 4\)[/tex] and [tex]\(x = 5\)[/tex] because they are close to each other. Let's use [tex]\(x = 4.5\)[/tex] as our starting point.
Step 1: Initial guess
Start with [tex]\(x = 4.5\)[/tex].
Step 2: Define the function [tex]\(f(x)\)[/tex]
We rearrange the original equation to define a function [tex]\(f(x)\)[/tex] that will be zero at the solution:
[tex]\[ f(x) = x^2 - 5x + 1 - \frac{2}{x-1} \][/tex]
Step 3: Compute the derivative [tex]\(f'(x)\)[/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( x^2 - 5x + 1 - \frac{2}{x-1} \right) \][/tex]
[tex]\[ f'(x) = 2x - 5 + \frac{2}{(x-1)^2} \][/tex]
Step 4: Perform iterations using Newton's method
Using the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
Let’s calculate the next approximations:
Iteration 1:
For [tex]\(x = 4.5\)[/tex],
[tex]\[ f(4.5) = 4.5^2 - 5 \cdot 4.5 + 1 - \frac{2}{4.5 - 1} \][/tex]
[tex]\[ f(4.5) = 20.25 - 22.5 + 1 - \frac{2}{3.5} \][/tex]
[tex]\[ f(4.5) = -1.25 - 0.5714 \][/tex]
[tex]\[ f(4.5) = -1.8214 \][/tex]
[tex]\[ f'(4.5) = 2 \cdot 4.5 - 5 + \frac{2}{(4.5 - 1)^2} \][/tex]
[tex]\[ f'(4.5) = 9 - 5 + \frac{2}{3.5^2} \][/tex]
[tex]\[ f'(4.5) = 4 + \frac{2}{12.25} \][/tex]
[tex]\[ f'(4.5) = 4 + 0.1633 \][/tex]
[tex]\[ f'(4.5) = 4.1633 \][/tex]
Next approximation:
[tex]\[ x_1 = 4.5 - \frac{-1.8214}{4.1633} \][/tex]
[tex]\[ x_1 \approx 4.938 \][/tex]
Iteration 2:
For [tex]\(x \approx 4.938\)[/tex],
[tex]\[ f(4.938) = 4.938^2 - 5 \cdot 4.938 + 1 - \frac{2}{4.938 - 1} \][/tex]
[tex]\[ f(4.938) = 24.3785 - 24.69 + 1 - \frac{2}{3.938} \][/tex]
[tex]\[ f(4.938) = -0.3115 - 0.508 \][/tex]
[tex]\[ f(4.938) = -0.8195 \][/tex]
[tex]\[ f'(4.938) = 2 \cdot 4.938 - 5 + \frac{2}{(4.938 - 1)^2} \][/tex]
[tex]\[ f'(4.938) = 9.876 - 5 + \frac{2}{15.5016} \][/tex]
[tex]\[ f'(4.938) = 4.876 + 0.129 \][/tex]
[tex]\[ f'(4.938) = 5.005 \][/tex]
Next approximation:
[tex]\[ x_2 = 4.938 - \frac{-0.8195}{5.005} \][/tex]
[tex]\[ x_2 \approx 5.102 \][/tex]
Iteration 3:
For [tex]\(x \approx 5.102\)[/tex],
[tex]\[ f(5.102) = 5.102^2 - 5 \cdot 5.102 + 1 - \frac{2}{5.102 - 1} \][/tex]
[tex]\[ f(5.102) = 26.042 - 25.51 + 1 - \frac{2}{4.102} \][/tex]
[tex]\[ f(5.102) = 0.532 - 0.4877 \][/tex]
[tex]\[ f(5.102) = 0.0443 \][/tex]
[tex]\[ f'(5.102) = 2 \cdot 5.102 - 5 + \frac{2}{(5.102 - 1)^2} \][/tex]
[tex]\[ f'(5.102) = 10.204 - 5 + \frac{2}{16.816} \][/tex]
[tex]\[ f'(5.102) = 5.204 + 0.119 \][/tex]
[tex]\[ f'(5.102) = 5.323 \][/tex]
Next approximation:
[tex]\[ x_3 = 5.102 - \frac{0.0443}{5.323} \][/tex]
[tex]\[ x_3 \approx 5.0946 \][/tex]
Step 5: Compare to given options
We now compare [tex]\(x \approx 5.0946\)[/tex] to the given options in their decimal form:
A. [tex]\(\frac{33}{8} \approx 4.125\)[/tex]
B. [tex]\(\frac{65}{16} \approx 4.0625\)[/tex]
C. [tex]\(\frac{79}{16} \approx 4.9375\)[/tex]
D. [tex]\(\frac{39}{8} \approx 4.875\)[/tex]
After comparing, it is evident that the closest option is D.
Therefore, the correct answer is:
D. [tex]\( x \approx \frac{39}{8} \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.