Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's provide a detailed, step-by-step solution to approximate the solution to the given equation by performing three iterations of successive approximation.
Given the equation:
[tex]$ x^2 - 5x + 1 = \frac{2}{x-1} $[/tex]
We will use an iteration method to approximate a solution. Let's begin with an initial guess from between [tex]\(x = 4\)[/tex] and [tex]\(x = 5\)[/tex] because they are close to each other. Let's use [tex]\(x = 4.5\)[/tex] as our starting point.
Step 1: Initial guess
Start with [tex]\(x = 4.5\)[/tex].
Step 2: Define the function [tex]\(f(x)\)[/tex]
We rearrange the original equation to define a function [tex]\(f(x)\)[/tex] that will be zero at the solution:
[tex]\[ f(x) = x^2 - 5x + 1 - \frac{2}{x-1} \][/tex]
Step 3: Compute the derivative [tex]\(f'(x)\)[/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( x^2 - 5x + 1 - \frac{2}{x-1} \right) \][/tex]
[tex]\[ f'(x) = 2x - 5 + \frac{2}{(x-1)^2} \][/tex]
Step 4: Perform iterations using Newton's method
Using the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
Let’s calculate the next approximations:
Iteration 1:
For [tex]\(x = 4.5\)[/tex],
[tex]\[ f(4.5) = 4.5^2 - 5 \cdot 4.5 + 1 - \frac{2}{4.5 - 1} \][/tex]
[tex]\[ f(4.5) = 20.25 - 22.5 + 1 - \frac{2}{3.5} \][/tex]
[tex]\[ f(4.5) = -1.25 - 0.5714 \][/tex]
[tex]\[ f(4.5) = -1.8214 \][/tex]
[tex]\[ f'(4.5) = 2 \cdot 4.5 - 5 + \frac{2}{(4.5 - 1)^2} \][/tex]
[tex]\[ f'(4.5) = 9 - 5 + \frac{2}{3.5^2} \][/tex]
[tex]\[ f'(4.5) = 4 + \frac{2}{12.25} \][/tex]
[tex]\[ f'(4.5) = 4 + 0.1633 \][/tex]
[tex]\[ f'(4.5) = 4.1633 \][/tex]
Next approximation:
[tex]\[ x_1 = 4.5 - \frac{-1.8214}{4.1633} \][/tex]
[tex]\[ x_1 \approx 4.938 \][/tex]
Iteration 2:
For [tex]\(x \approx 4.938\)[/tex],
[tex]\[ f(4.938) = 4.938^2 - 5 \cdot 4.938 + 1 - \frac{2}{4.938 - 1} \][/tex]
[tex]\[ f(4.938) = 24.3785 - 24.69 + 1 - \frac{2}{3.938} \][/tex]
[tex]\[ f(4.938) = -0.3115 - 0.508 \][/tex]
[tex]\[ f(4.938) = -0.8195 \][/tex]
[tex]\[ f'(4.938) = 2 \cdot 4.938 - 5 + \frac{2}{(4.938 - 1)^2} \][/tex]
[tex]\[ f'(4.938) = 9.876 - 5 + \frac{2}{15.5016} \][/tex]
[tex]\[ f'(4.938) = 4.876 + 0.129 \][/tex]
[tex]\[ f'(4.938) = 5.005 \][/tex]
Next approximation:
[tex]\[ x_2 = 4.938 - \frac{-0.8195}{5.005} \][/tex]
[tex]\[ x_2 \approx 5.102 \][/tex]
Iteration 3:
For [tex]\(x \approx 5.102\)[/tex],
[tex]\[ f(5.102) = 5.102^2 - 5 \cdot 5.102 + 1 - \frac{2}{5.102 - 1} \][/tex]
[tex]\[ f(5.102) = 26.042 - 25.51 + 1 - \frac{2}{4.102} \][/tex]
[tex]\[ f(5.102) = 0.532 - 0.4877 \][/tex]
[tex]\[ f(5.102) = 0.0443 \][/tex]
[tex]\[ f'(5.102) = 2 \cdot 5.102 - 5 + \frac{2}{(5.102 - 1)^2} \][/tex]
[tex]\[ f'(5.102) = 10.204 - 5 + \frac{2}{16.816} \][/tex]
[tex]\[ f'(5.102) = 5.204 + 0.119 \][/tex]
[tex]\[ f'(5.102) = 5.323 \][/tex]
Next approximation:
[tex]\[ x_3 = 5.102 - \frac{0.0443}{5.323} \][/tex]
[tex]\[ x_3 \approx 5.0946 \][/tex]
Step 5: Compare to given options
We now compare [tex]\(x \approx 5.0946\)[/tex] to the given options in their decimal form:
A. [tex]\(\frac{33}{8} \approx 4.125\)[/tex]
B. [tex]\(\frac{65}{16} \approx 4.0625\)[/tex]
C. [tex]\(\frac{79}{16} \approx 4.9375\)[/tex]
D. [tex]\(\frac{39}{8} \approx 4.875\)[/tex]
After comparing, it is evident that the closest option is D.
Therefore, the correct answer is:
D. [tex]\( x \approx \frac{39}{8} \)[/tex]
Given the equation:
[tex]$ x^2 - 5x + 1 = \frac{2}{x-1} $[/tex]
We will use an iteration method to approximate a solution. Let's begin with an initial guess from between [tex]\(x = 4\)[/tex] and [tex]\(x = 5\)[/tex] because they are close to each other. Let's use [tex]\(x = 4.5\)[/tex] as our starting point.
Step 1: Initial guess
Start with [tex]\(x = 4.5\)[/tex].
Step 2: Define the function [tex]\(f(x)\)[/tex]
We rearrange the original equation to define a function [tex]\(f(x)\)[/tex] that will be zero at the solution:
[tex]\[ f(x) = x^2 - 5x + 1 - \frac{2}{x-1} \][/tex]
Step 3: Compute the derivative [tex]\(f'(x)\)[/tex]
[tex]\[ f'(x) = \frac{d}{dx} \left( x^2 - 5x + 1 - \frac{2}{x-1} \right) \][/tex]
[tex]\[ f'(x) = 2x - 5 + \frac{2}{(x-1)^2} \][/tex]
Step 4: Perform iterations using Newton's method
Using the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
Let’s calculate the next approximations:
Iteration 1:
For [tex]\(x = 4.5\)[/tex],
[tex]\[ f(4.5) = 4.5^2 - 5 \cdot 4.5 + 1 - \frac{2}{4.5 - 1} \][/tex]
[tex]\[ f(4.5) = 20.25 - 22.5 + 1 - \frac{2}{3.5} \][/tex]
[tex]\[ f(4.5) = -1.25 - 0.5714 \][/tex]
[tex]\[ f(4.5) = -1.8214 \][/tex]
[tex]\[ f'(4.5) = 2 \cdot 4.5 - 5 + \frac{2}{(4.5 - 1)^2} \][/tex]
[tex]\[ f'(4.5) = 9 - 5 + \frac{2}{3.5^2} \][/tex]
[tex]\[ f'(4.5) = 4 + \frac{2}{12.25} \][/tex]
[tex]\[ f'(4.5) = 4 + 0.1633 \][/tex]
[tex]\[ f'(4.5) = 4.1633 \][/tex]
Next approximation:
[tex]\[ x_1 = 4.5 - \frac{-1.8214}{4.1633} \][/tex]
[tex]\[ x_1 \approx 4.938 \][/tex]
Iteration 2:
For [tex]\(x \approx 4.938\)[/tex],
[tex]\[ f(4.938) = 4.938^2 - 5 \cdot 4.938 + 1 - \frac{2}{4.938 - 1} \][/tex]
[tex]\[ f(4.938) = 24.3785 - 24.69 + 1 - \frac{2}{3.938} \][/tex]
[tex]\[ f(4.938) = -0.3115 - 0.508 \][/tex]
[tex]\[ f(4.938) = -0.8195 \][/tex]
[tex]\[ f'(4.938) = 2 \cdot 4.938 - 5 + \frac{2}{(4.938 - 1)^2} \][/tex]
[tex]\[ f'(4.938) = 9.876 - 5 + \frac{2}{15.5016} \][/tex]
[tex]\[ f'(4.938) = 4.876 + 0.129 \][/tex]
[tex]\[ f'(4.938) = 5.005 \][/tex]
Next approximation:
[tex]\[ x_2 = 4.938 - \frac{-0.8195}{5.005} \][/tex]
[tex]\[ x_2 \approx 5.102 \][/tex]
Iteration 3:
For [tex]\(x \approx 5.102\)[/tex],
[tex]\[ f(5.102) = 5.102^2 - 5 \cdot 5.102 + 1 - \frac{2}{5.102 - 1} \][/tex]
[tex]\[ f(5.102) = 26.042 - 25.51 + 1 - \frac{2}{4.102} \][/tex]
[tex]\[ f(5.102) = 0.532 - 0.4877 \][/tex]
[tex]\[ f(5.102) = 0.0443 \][/tex]
[tex]\[ f'(5.102) = 2 \cdot 5.102 - 5 + \frac{2}{(5.102 - 1)^2} \][/tex]
[tex]\[ f'(5.102) = 10.204 - 5 + \frac{2}{16.816} \][/tex]
[tex]\[ f'(5.102) = 5.204 + 0.119 \][/tex]
[tex]\[ f'(5.102) = 5.323 \][/tex]
Next approximation:
[tex]\[ x_3 = 5.102 - \frac{0.0443}{5.323} \][/tex]
[tex]\[ x_3 \approx 5.0946 \][/tex]
Step 5: Compare to given options
We now compare [tex]\(x \approx 5.0946\)[/tex] to the given options in their decimal form:
A. [tex]\(\frac{33}{8} \approx 4.125\)[/tex]
B. [tex]\(\frac{65}{16} \approx 4.0625\)[/tex]
C. [tex]\(\frac{79}{16} \approx 4.9375\)[/tex]
D. [tex]\(\frac{39}{8} \approx 4.875\)[/tex]
After comparing, it is evident that the closest option is D.
Therefore, the correct answer is:
D. [tex]\( x \approx \frac{39}{8} \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.