Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the Highest Common Factor (H.C.F.), also known as the Greatest Common Divisor (GCD), of the two given polynomials [tex]\( 8a^3 + b^3 \)[/tex] and [tex]\( 16a^4 + 4a b + b \)[/tex], we undertake the following steps:
1. Express the Polynomials:
- Let [tex]\( \text{poly1} = 8a^3 + b^3 \)[/tex]
- Let [tex]\( \text{poly2} = 16a^4 + 4a b + b \)[/tex]
2. Factorize the Polynomials:
- [tex]\( \text{poly1} = 8a^3 + b^3 \)[/tex] looks for factorization as a sum of cubes:
[tex]\( 8a^3 = (2a)^3 \)[/tex],
[tex]\( b^3 = (b)^3 \)[/tex],
Thus, [tex]\( 8a^3 + b^3 = (2a + b)((2a)^2 - (2a)(b) + b^2) = (2a + b)(4a^2 - 2ab + b^2) \)[/tex].
- For [tex]\( \text{poly2} = 16a^4 + 4ab + b \)[/tex], it is not as straightforward for standard factorization.
3. Identify Common Factors:
- Upon looking at factorized poly1, [tex]\( (2a + b) \)[/tex] is straightforward as a potential common factor.
- However, after a detailed examination of poly2, we identify no significant polynomial terms that precisely fit or factor cleanly into [tex]\( 16a^4 + 4ab + b \)[/tex].
4. Evaluate H.C.F.:
- Since we cannot find any common terms upon further inspection, between the factorized result of poly1 and poly2, the polynomials share no common factor besides the trivial factor [tex]\(1\)[/tex].
Therefore, the H.C.F. (Greatest Common Divisor) of [tex]\( 8a^3 + b^3 \)[/tex] and [tex]\( 16a^4 + 4ab + b \)[/tex] is:
[tex]\[ \boxed{1} \][/tex]
This means the two polynomials are co-prime, having no non-trivial common factors.
1. Express the Polynomials:
- Let [tex]\( \text{poly1} = 8a^3 + b^3 \)[/tex]
- Let [tex]\( \text{poly2} = 16a^4 + 4a b + b \)[/tex]
2. Factorize the Polynomials:
- [tex]\( \text{poly1} = 8a^3 + b^3 \)[/tex] looks for factorization as a sum of cubes:
[tex]\( 8a^3 = (2a)^3 \)[/tex],
[tex]\( b^3 = (b)^3 \)[/tex],
Thus, [tex]\( 8a^3 + b^3 = (2a + b)((2a)^2 - (2a)(b) + b^2) = (2a + b)(4a^2 - 2ab + b^2) \)[/tex].
- For [tex]\( \text{poly2} = 16a^4 + 4ab + b \)[/tex], it is not as straightforward for standard factorization.
3. Identify Common Factors:
- Upon looking at factorized poly1, [tex]\( (2a + b) \)[/tex] is straightforward as a potential common factor.
- However, after a detailed examination of poly2, we identify no significant polynomial terms that precisely fit or factor cleanly into [tex]\( 16a^4 + 4ab + b \)[/tex].
4. Evaluate H.C.F.:
- Since we cannot find any common terms upon further inspection, between the factorized result of poly1 and poly2, the polynomials share no common factor besides the trivial factor [tex]\(1\)[/tex].
Therefore, the H.C.F. (Greatest Common Divisor) of [tex]\( 8a^3 + b^3 \)[/tex] and [tex]\( 16a^4 + 4ab + b \)[/tex] is:
[tex]\[ \boxed{1} \][/tex]
This means the two polynomials are co-prime, having no non-trivial common factors.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.