Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the derivative of the given function [tex]\( y = (1 + x^2)^{19} \)[/tex] with respect to [tex]\( x \)[/tex], we can follow these steps:
1. Identify the function: The given function is:
[tex]\[ y = (1 + x^2)^{19} \][/tex]
2. Use the chain rule: To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], we will apply the chain rule. The chain rule states that if you have a composite function [tex]\( y = f(g(x)) \)[/tex], then the derivative [tex]\( \frac{d y}{d x} \)[/tex] is given by:
[tex]\[ \frac{d y}{d x} = \frac{d f}{d g} \cdot \frac{d g}{d x} \][/tex]
Here, [tex]\( f(u) = u^{19} \)[/tex] where [tex]\( u = 1 + x^2 \)[/tex].
3. Differentiate the outer function: First, we differentiate the outer function [tex]\( f(u) = u^{19} \)[/tex] with respect to [tex]\( u \)[/tex]:
[tex]\[ \frac{d f}{d u} = 19 u^{18} \][/tex]
Since [tex]\( u = 1 + x^2 \)[/tex], this becomes:
[tex]\[ \frac{d f}{d u} = 19 (1 + x^2)^{18} \][/tex]
4. Differentiate the inner function: Next, we differentiate the inner function [tex]\( g(x) = 1 + x^2 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d g}{d x} = 2x \][/tex]
5. Multiply the derivatives: Now, we multiply the derivatives obtained from the outer and inner functions:
[tex]\[ \frac{d y}{d x} = \left( 19 (1 + x^2)^{18} \right) \cdot \left( 2x \right) \][/tex]
6. Simplify the expression: Combine and simplify the expression:
[tex]\[ \frac{d y}{d x} = 38 x (1 + x^2)^{18} \][/tex]
7. Relate to [tex]\( y \)[/tex]: Since [tex]\( y = (1 + x^2)^{19} \)[/tex], we notice that:
[tex]\[ (1 + x^2)^{18} = \frac{y}{1 + x^2} \][/tex]
Therefore,
[tex]\[ \frac{d y}{d x} = 38 x \left( \frac{y}{1 + x^2} \right) \][/tex]
Simplify this to:
[tex]\[ \frac{d y}{d x} = \frac{38 x y}{1 + x^2} \][/tex]
8. Select the correct answer: Comparing this result with the provided options, we see that the correct option is:
[tex]\[ \boxed{\text{B}} \][/tex]
1. Identify the function: The given function is:
[tex]\[ y = (1 + x^2)^{19} \][/tex]
2. Use the chain rule: To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], we will apply the chain rule. The chain rule states that if you have a composite function [tex]\( y = f(g(x)) \)[/tex], then the derivative [tex]\( \frac{d y}{d x} \)[/tex] is given by:
[tex]\[ \frac{d y}{d x} = \frac{d f}{d g} \cdot \frac{d g}{d x} \][/tex]
Here, [tex]\( f(u) = u^{19} \)[/tex] where [tex]\( u = 1 + x^2 \)[/tex].
3. Differentiate the outer function: First, we differentiate the outer function [tex]\( f(u) = u^{19} \)[/tex] with respect to [tex]\( u \)[/tex]:
[tex]\[ \frac{d f}{d u} = 19 u^{18} \][/tex]
Since [tex]\( u = 1 + x^2 \)[/tex], this becomes:
[tex]\[ \frac{d f}{d u} = 19 (1 + x^2)^{18} \][/tex]
4. Differentiate the inner function: Next, we differentiate the inner function [tex]\( g(x) = 1 + x^2 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d g}{d x} = 2x \][/tex]
5. Multiply the derivatives: Now, we multiply the derivatives obtained from the outer and inner functions:
[tex]\[ \frac{d y}{d x} = \left( 19 (1 + x^2)^{18} \right) \cdot \left( 2x \right) \][/tex]
6. Simplify the expression: Combine and simplify the expression:
[tex]\[ \frac{d y}{d x} = 38 x (1 + x^2)^{18} \][/tex]
7. Relate to [tex]\( y \)[/tex]: Since [tex]\( y = (1 + x^2)^{19} \)[/tex], we notice that:
[tex]\[ (1 + x^2)^{18} = \frac{y}{1 + x^2} \][/tex]
Therefore,
[tex]\[ \frac{d y}{d x} = 38 x \left( \frac{y}{1 + x^2} \right) \][/tex]
Simplify this to:
[tex]\[ \frac{d y}{d x} = \frac{38 x y}{1 + x^2} \][/tex]
8. Select the correct answer: Comparing this result with the provided options, we see that the correct option is:
[tex]\[ \boxed{\text{B}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.