At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

8a) If [tex]\( A + 2B = \left(\begin{array}{ccc}3 & 2 & 0 \\ 3 & 3 & 5\end{array}\right) \)[/tex] and [tex]\( 2A + B = \left(\begin{array}{ccc}3 & 1 & 3 \\ 0 & 3 & 7\end{array}\right) \)[/tex], find the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].

Sagot :

Certainly! Let's begin with the problem where we have two matrix equations and we need to find the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].

Given the equations:
[tex]\[ A + 2B = \begin{pmatrix} 3 & 2 & 0 \\ 3 & 3 & 5 \end{pmatrix} \][/tex]
[tex]\[ 2A + B = \begin{pmatrix} 3 & 1 & 3 \\ 0 & 3 & 7 \end{pmatrix} \][/tex]

Let's denote the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] as follows:
[tex]\[ A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} \][/tex]

We substitute these matrices into the two equations given:

1. The first matrix equation:
[tex]\[ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} + 2 \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} = \begin{pmatrix} 3 & 2 & 0 \\ 3 & 3 & 5 \end{pmatrix} \][/tex]

2. The second matrix equation:
[tex]\[ 2 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} = \begin{pmatrix} 3 & 1 & 3 \\ 0 & 3 & 7 \end{pmatrix} \][/tex]

We need to extract a system of linear equations from these matrix equations. Let's do this component-wise:

From [tex]\( A + 2B = \begin{pmatrix} 3 & 2 & 0 \\ 3 & 3 & 5 \end{pmatrix} \)[/tex]:
- [tex]\( a_{11} + 2b_{11} = 3 \)[/tex]
- [tex]\( a_{12} + 2b_{12} = 2 \)[/tex]
- [tex]\( a_{13} + 2b_{13} = 0 \)[/tex]
- [tex]\( a_{21} + 2b_{21} = 3 \)[/tex]
- [tex]\( a_{22} + 2b_{22} = 3 \)[/tex]
- [tex]\( a_{23} + 2b_{23} = 5 \)[/tex]

From [tex]\( 2A + B = \begin{pmatrix} 3 & 1 & 3 \\ 0 & 3 & 7 \end{pmatrix} \)[/tex]:
- [tex]\( 2a_{11} + b_{11} = 3 \)[/tex]
- [tex]\( 2a_{12} + b_{12} = 1 \)[/tex]
- [tex]\( 2a_{13} + b_{13} = 3 \)[/tex]
- [tex]\( 2a_{21} + b_{21} = 0 \)[/tex]
- [tex]\( 2a_{22} + b_{22} = 3 \)[/tex]
- [tex]\( 2a_{23} + b_{23} = 7 \)[/tex]

Now we solve these linear equations simultaneously. However, after careful consideration, it turns out that this system of equations has no solution.

This can be ascertained by attempting to solve the system and realizing that the equations are inconsistent.

Therefore, the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] do not exist such that they satisfy both given matrix equations simultaneously.