Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the probability that a randomly selected moviegoer is at least 25 years old, follow these steps:
1. Determine the total number of moviegoers:
The total number of moviegoers is given as 3670.
2. Calculate the number of moviegoers aged 25 or older:
Sum the number of moviegoers in the age groups 25-44, 45-64, and 65-74:
[tex]\[ \text{Number of moviegoers aged 25 or older} = 1100 + 690 + 520 = 2310 \][/tex]
3. Set up the probability fraction:
The probability is the ratio of the number of moviegoers aged 25 or older to the total number of moviegoers:
[tex]\[ \text{Probability} = \frac{2310}{3670} \][/tex]
4. Simplify the fraction:
To simplify [tex]\(\frac{2310}{3670}\)[/tex], find the greatest common divisor (GCD) of 2310 and 3670. Here, the GCD is 10. Divide both the numerator and the denominator by the GCD to simplify the fraction:
[tex]\[ \frac{2310 \div 10}{3670 \div 10} = \frac{231}{367} \][/tex]
So, the probability that a randomly selected moviegoer is at least 25 years old, expressed as a simplified fraction, is:
[tex]\[ \boxed{\frac{231}{367}} \][/tex]
1. Determine the total number of moviegoers:
The total number of moviegoers is given as 3670.
2. Calculate the number of moviegoers aged 25 or older:
Sum the number of moviegoers in the age groups 25-44, 45-64, and 65-74:
[tex]\[ \text{Number of moviegoers aged 25 or older} = 1100 + 690 + 520 = 2310 \][/tex]
3. Set up the probability fraction:
The probability is the ratio of the number of moviegoers aged 25 or older to the total number of moviegoers:
[tex]\[ \text{Probability} = \frac{2310}{3670} \][/tex]
4. Simplify the fraction:
To simplify [tex]\(\frac{2310}{3670}\)[/tex], find the greatest common divisor (GCD) of 2310 and 3670. Here, the GCD is 10. Divide both the numerator and the denominator by the GCD to simplify the fraction:
[tex]\[ \frac{2310 \div 10}{3670 \div 10} = \frac{231}{367} \][/tex]
So, the probability that a randomly selected moviegoer is at least 25 years old, expressed as a simplified fraction, is:
[tex]\[ \boxed{\frac{231}{367}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.