At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, let's go through the steps systematically:
### Step 1: Determine the molar masses
1. Molar mass of Carbon (C):
[tex]\[ \text{Molar mass of C} = 12.01 \, \text{g/mol} \][/tex]
2. Molar mass of ferric oxide (Fe2O3):
[tex]\[ \text{Molar mass of Fe2O3} = 159.69 \, \text{g/mol} \][/tex]
### Step 2: Calculate the moles of Carbon
1. Given mass of Carbon:
[tex]\[ \text{Mass of C} = 13.0 \, \text{g} \][/tex]
2. Moles of Carbon:
[tex]\[ \text{Moles of C} = \frac{\text{Mass of C}}{\text{Molar mass of C}} = \frac{13.0 \, \text{g}}{12.01 \, \text{g/mol}} \approx 1.082 \, \text{moles} \][/tex]
### Step 3: Determine the stoichiometric relationship
1. From the given balanced equation:
[tex]\[ 2 \, \text{Fe}_2\text{O}_3 (s) + 3 \, \text{C} (s) \xrightarrow{\text{heat}} 4 \, \text{Fe} (s) + 3 \, \text{CO}_2 (g) \][/tex]
The stoichiometric coefficients tell us:
[tex]\[ \text{2 moles of Fe2O3 react with 3 moles of C} \][/tex]
Therefore:
[tex]\[ \text{For every 1 mole of Fe2O3, } \frac{3}{2} = 1.5 \text{ moles of C are needed} \][/tex]
### Step 4: Calculate the moles of Fe2O3 needed
1. Moles of Fe2O3 needed:
[tex]\[ \text{Moles of Fe2O3} = \frac{\text{Moles of C}}{1.5} = \frac{1.082 \, \text{moles}}{1.5} \approx 0.722 \, \text{moles} \][/tex]
### Step 5: Calculate the mass of Fe2O3 needed
1. Mass of Fe2O3 needed:
[tex]\[ \text{Mass of Fe2O3} = \text{Moles of Fe2O3} \times \text{Molar mass of Fe2O3} = 0.722 \, \text{moles} \times 159.69 \, \text{g/mol} \approx 115.24 \, \text{g} \][/tex]
### Conclusion
The mass of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex] needed to react with 13.0 g of C is approximately [tex]\( 115.24 \)[/tex] grams.
### Step 1: Determine the molar masses
1. Molar mass of Carbon (C):
[tex]\[ \text{Molar mass of C} = 12.01 \, \text{g/mol} \][/tex]
2. Molar mass of ferric oxide (Fe2O3):
[tex]\[ \text{Molar mass of Fe2O3} = 159.69 \, \text{g/mol} \][/tex]
### Step 2: Calculate the moles of Carbon
1. Given mass of Carbon:
[tex]\[ \text{Mass of C} = 13.0 \, \text{g} \][/tex]
2. Moles of Carbon:
[tex]\[ \text{Moles of C} = \frac{\text{Mass of C}}{\text{Molar mass of C}} = \frac{13.0 \, \text{g}}{12.01 \, \text{g/mol}} \approx 1.082 \, \text{moles} \][/tex]
### Step 3: Determine the stoichiometric relationship
1. From the given balanced equation:
[tex]\[ 2 \, \text{Fe}_2\text{O}_3 (s) + 3 \, \text{C} (s) \xrightarrow{\text{heat}} 4 \, \text{Fe} (s) + 3 \, \text{CO}_2 (g) \][/tex]
The stoichiometric coefficients tell us:
[tex]\[ \text{2 moles of Fe2O3 react with 3 moles of C} \][/tex]
Therefore:
[tex]\[ \text{For every 1 mole of Fe2O3, } \frac{3}{2} = 1.5 \text{ moles of C are needed} \][/tex]
### Step 4: Calculate the moles of Fe2O3 needed
1. Moles of Fe2O3 needed:
[tex]\[ \text{Moles of Fe2O3} = \frac{\text{Moles of C}}{1.5} = \frac{1.082 \, \text{moles}}{1.5} \approx 0.722 \, \text{moles} \][/tex]
### Step 5: Calculate the mass of Fe2O3 needed
1. Mass of Fe2O3 needed:
[tex]\[ \text{Mass of Fe2O3} = \text{Moles of Fe2O3} \times \text{Molar mass of Fe2O3} = 0.722 \, \text{moles} \times 159.69 \, \text{g/mol} \approx 115.24 \, \text{g} \][/tex]
### Conclusion
The mass of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex] needed to react with 13.0 g of C is approximately [tex]\( 115.24 \)[/tex] grams.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.