Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, let's go through the steps systematically:
### Step 1: Determine the molar masses
1. Molar mass of Carbon (C):
[tex]\[ \text{Molar mass of C} = 12.01 \, \text{g/mol} \][/tex]
2. Molar mass of ferric oxide (Fe2O3):
[tex]\[ \text{Molar mass of Fe2O3} = 159.69 \, \text{g/mol} \][/tex]
### Step 2: Calculate the moles of Carbon
1. Given mass of Carbon:
[tex]\[ \text{Mass of C} = 13.0 \, \text{g} \][/tex]
2. Moles of Carbon:
[tex]\[ \text{Moles of C} = \frac{\text{Mass of C}}{\text{Molar mass of C}} = \frac{13.0 \, \text{g}}{12.01 \, \text{g/mol}} \approx 1.082 \, \text{moles} \][/tex]
### Step 3: Determine the stoichiometric relationship
1. From the given balanced equation:
[tex]\[ 2 \, \text{Fe}_2\text{O}_3 (s) + 3 \, \text{C} (s) \xrightarrow{\text{heat}} 4 \, \text{Fe} (s) + 3 \, \text{CO}_2 (g) \][/tex]
The stoichiometric coefficients tell us:
[tex]\[ \text{2 moles of Fe2O3 react with 3 moles of C} \][/tex]
Therefore:
[tex]\[ \text{For every 1 mole of Fe2O3, } \frac{3}{2} = 1.5 \text{ moles of C are needed} \][/tex]
### Step 4: Calculate the moles of Fe2O3 needed
1. Moles of Fe2O3 needed:
[tex]\[ \text{Moles of Fe2O3} = \frac{\text{Moles of C}}{1.5} = \frac{1.082 \, \text{moles}}{1.5} \approx 0.722 \, \text{moles} \][/tex]
### Step 5: Calculate the mass of Fe2O3 needed
1. Mass of Fe2O3 needed:
[tex]\[ \text{Mass of Fe2O3} = \text{Moles of Fe2O3} \times \text{Molar mass of Fe2O3} = 0.722 \, \text{moles} \times 159.69 \, \text{g/mol} \approx 115.24 \, \text{g} \][/tex]
### Conclusion
The mass of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex] needed to react with 13.0 g of C is approximately [tex]\( 115.24 \)[/tex] grams.
### Step 1: Determine the molar masses
1. Molar mass of Carbon (C):
[tex]\[ \text{Molar mass of C} = 12.01 \, \text{g/mol} \][/tex]
2. Molar mass of ferric oxide (Fe2O3):
[tex]\[ \text{Molar mass of Fe2O3} = 159.69 \, \text{g/mol} \][/tex]
### Step 2: Calculate the moles of Carbon
1. Given mass of Carbon:
[tex]\[ \text{Mass of C} = 13.0 \, \text{g} \][/tex]
2. Moles of Carbon:
[tex]\[ \text{Moles of C} = \frac{\text{Mass of C}}{\text{Molar mass of C}} = \frac{13.0 \, \text{g}}{12.01 \, \text{g/mol}} \approx 1.082 \, \text{moles} \][/tex]
### Step 3: Determine the stoichiometric relationship
1. From the given balanced equation:
[tex]\[ 2 \, \text{Fe}_2\text{O}_3 (s) + 3 \, \text{C} (s) \xrightarrow{\text{heat}} 4 \, \text{Fe} (s) + 3 \, \text{CO}_2 (g) \][/tex]
The stoichiometric coefficients tell us:
[tex]\[ \text{2 moles of Fe2O3 react with 3 moles of C} \][/tex]
Therefore:
[tex]\[ \text{For every 1 mole of Fe2O3, } \frac{3}{2} = 1.5 \text{ moles of C are needed} \][/tex]
### Step 4: Calculate the moles of Fe2O3 needed
1. Moles of Fe2O3 needed:
[tex]\[ \text{Moles of Fe2O3} = \frac{\text{Moles of C}}{1.5} = \frac{1.082 \, \text{moles}}{1.5} \approx 0.722 \, \text{moles} \][/tex]
### Step 5: Calculate the mass of Fe2O3 needed
1. Mass of Fe2O3 needed:
[tex]\[ \text{Mass of Fe2O3} = \text{Moles of Fe2O3} \times \text{Molar mass of Fe2O3} = 0.722 \, \text{moles} \times 159.69 \, \text{g/mol} \approx 115.24 \, \text{g} \][/tex]
### Conclusion
The mass of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex] needed to react with 13.0 g of C is approximately [tex]\( 115.24 \)[/tex] grams.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.