Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\(\left|\left| |x|-1 \right|-2\right| = 3\)[/tex], we need to carefully handle the absolute value functions step-by-step.
### Step-by-Step Solution:
1. Innermost Absolute Value:
[tex]\[ y = |x| - 1 \][/tex]
2. Next Absolute Value:
[tex]\[ z = |y| - 2 = ||x|-1| - 2 \][/tex]
3. Setting up the full equation using the outer absolute value:
[tex]\[ \left|\left| |x|-1 \right|-2\right| = 3 \][/tex]
Breaking it down, we have:
[tex]\[ |z|=3 \implies z = 3 \text{ or } z = -3 \][/tex]
4. Solution for [tex]\(z = 3\)[/tex]:
[tex]\[ ||x|-1|-2 = 3 \][/tex]
This can be further broken down into two cases:
[tex]\[ ||x|-1| - 2 = 3 \text{ or } ||x|-1| - 2 = -3 \][/tex]
Case 1:
[tex]\[ ||x|-1| - 2 = 3 \implies ||x|-1| = 5 \][/tex]
This further splits into two sub-cases:
[tex]\[ |x| - 1 = 5 \implies |x| = 6 \implies x = 6 \text{ or } x = -6 \][/tex]
and
[tex]\[ |x| - 1 = -5 \text{ which has no solution since } |x|-1 \geq 0. \][/tex]
Case 2:
[tex]\[ ||x|-1| - 2 = -3 \implies ||x|-1| = -1 \][/tex]
This also has no solution since [tex]\(||x|-1 \geq 0\)[/tex].
Therefore, from solving [tex]\(||x|-1|-2 = 3\)[/tex], we have:
[tex]\[ x = 6 \text{ or } x = -6 \][/tex]
5. Solution for [tex]\(z = -3\)[/tex]:
[tex]\[ ||x|-1|-2 = -3 \][/tex]
This case also has no solution since [tex]\(|\cdot| - 2 \geq -2\)[/tex].
### Conclusions
By examining the cases, we find that the only valid solutions are:
- [tex]\( x = 6 \)[/tex]
- [tex]\( x = -6 \)[/tex]
Hence, the number of solutions for the equation [tex]\(\left|\left| |x|-1 \right|-2\right| = 3\)[/tex] is [tex]\(2\)[/tex].
### Answer:
[tex]\[ \boxed{2} \][/tex]
### Step-by-Step Solution:
1. Innermost Absolute Value:
[tex]\[ y = |x| - 1 \][/tex]
2. Next Absolute Value:
[tex]\[ z = |y| - 2 = ||x|-1| - 2 \][/tex]
3. Setting up the full equation using the outer absolute value:
[tex]\[ \left|\left| |x|-1 \right|-2\right| = 3 \][/tex]
Breaking it down, we have:
[tex]\[ |z|=3 \implies z = 3 \text{ or } z = -3 \][/tex]
4. Solution for [tex]\(z = 3\)[/tex]:
[tex]\[ ||x|-1|-2 = 3 \][/tex]
This can be further broken down into two cases:
[tex]\[ ||x|-1| - 2 = 3 \text{ or } ||x|-1| - 2 = -3 \][/tex]
Case 1:
[tex]\[ ||x|-1| - 2 = 3 \implies ||x|-1| = 5 \][/tex]
This further splits into two sub-cases:
[tex]\[ |x| - 1 = 5 \implies |x| = 6 \implies x = 6 \text{ or } x = -6 \][/tex]
and
[tex]\[ |x| - 1 = -5 \text{ which has no solution since } |x|-1 \geq 0. \][/tex]
Case 2:
[tex]\[ ||x|-1| - 2 = -3 \implies ||x|-1| = -1 \][/tex]
This also has no solution since [tex]\(||x|-1 \geq 0\)[/tex].
Therefore, from solving [tex]\(||x|-1|-2 = 3\)[/tex], we have:
[tex]\[ x = 6 \text{ or } x = -6 \][/tex]
5. Solution for [tex]\(z = -3\)[/tex]:
[tex]\[ ||x|-1|-2 = -3 \][/tex]
This case also has no solution since [tex]\(|\cdot| - 2 \geq -2\)[/tex].
### Conclusions
By examining the cases, we find that the only valid solutions are:
- [tex]\( x = 6 \)[/tex]
- [tex]\( x = -6 \)[/tex]
Hence, the number of solutions for the equation [tex]\(\left|\left| |x|-1 \right|-2\right| = 3\)[/tex] is [tex]\(2\)[/tex].
### Answer:
[tex]\[ \boxed{2} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.