Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the problem step-by-step.
1. Understand the Given Information:
- The circumference of the rim of the wheel is given as 27 inches.
- We need to find the length of each spoke, which is essentially the radius of the wheel.
2. Relationship Between Circumference and Radius:
- The circumference [tex]\( C \)[/tex] of a circle is given by the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle and [tex]\( \pi \)[/tex] (pi) is approximately 3.14159.
3. Rearrange the Formula to Solve for the Radius:
- We need to solve for [tex]\( r \)[/tex] (the radius). Rearranging the formula, we get:
[tex]\[ r = \frac{C}{2 \pi} \][/tex]
4. Substitute the Given Circumference:
- Substitute the circumference value (27 inches) into the formula:
[tex]\[ r = \frac{27}{2 \pi} \][/tex]
5. Calculate the Radius:
- When we divide 27 by [tex]\( 2 \pi \)[/tex], we get:
[tex]\[ r \approx 4.297183463481174 \][/tex]
6. Round the Radius to the Nearest Hundredth:
- Rounding 4.297183463481174 to the nearest hundredth, we get:
[tex]\[ r \approx 4.30 \][/tex]
Hence, the length of each spoke, rounded to the nearest hundredth, is approximately 4.30 inches. Therefore, the correct answer is:
O A. 4.30
1. Understand the Given Information:
- The circumference of the rim of the wheel is given as 27 inches.
- We need to find the length of each spoke, which is essentially the radius of the wheel.
2. Relationship Between Circumference and Radius:
- The circumference [tex]\( C \)[/tex] of a circle is given by the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle and [tex]\( \pi \)[/tex] (pi) is approximately 3.14159.
3. Rearrange the Formula to Solve for the Radius:
- We need to solve for [tex]\( r \)[/tex] (the radius). Rearranging the formula, we get:
[tex]\[ r = \frac{C}{2 \pi} \][/tex]
4. Substitute the Given Circumference:
- Substitute the circumference value (27 inches) into the formula:
[tex]\[ r = \frac{27}{2 \pi} \][/tex]
5. Calculate the Radius:
- When we divide 27 by [tex]\( 2 \pi \)[/tex], we get:
[tex]\[ r \approx 4.297183463481174 \][/tex]
6. Round the Radius to the Nearest Hundredth:
- Rounding 4.297183463481174 to the nearest hundredth, we get:
[tex]\[ r \approx 4.30 \][/tex]
Hence, the length of each spoke, rounded to the nearest hundredth, is approximately 4.30 inches. Therefore, the correct answer is:
O A. 4.30
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.