At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To understand what happens to the amount of [tex]\( H_2 \)[/tex] as the reaction shifts to the left, let's first analyze the given chemical equilibrium:
[tex]\[ CO_2(g) + H_2(g) + \text{Energy} \rightleftharpoons CO(g) + H_2O(g) \][/tex]
In this equilibrium, the reaction can proceed in either direction:
- Forward: From [tex]\( CO_2(g) + H_2(g) + \text{Energy} \)[/tex] to [tex]\( CO(g) + H_2O(g) \)[/tex]
- Reverse: From [tex]\( CO(g) + H_2O(g) \)[/tex] to [tex]\( CO_2(g) + H_2(g) + \text{Energy} \)[/tex]
When we say that the reaction shifts to the left, we mean that it favors the reverse reaction. Since the left side of the reaction is being favored, more reactants ([tex]\( CO_2(g) \)[/tex] and [tex]\( H_2(g) \)[/tex]) are being formed, and the products ([tex]\( CO(g) \)[/tex] and [tex]\( H_2O(g) \)[/tex]) are being consumed.
Now, let's explore what happens to [tex]\( H_2 \)[/tex]:
1. Shift to the Left Explained: The shift to the left means that the reverse reaction is taking place more frequently, converting [tex]\( CO(g) \)[/tex] and [tex]\( H_2O(g) \)[/tex] back into [tex]\( CO_2(g) \)[/tex] and [tex]\( H_2(g) \)[/tex].
2. Formation of [tex]\( H_2 \)[/tex]: In the reverse reaction, [tex]\( CO \)[/tex] and [tex]\( H_2O \)[/tex] combine to form [tex]\( CO_2 \)[/tex] and [tex]\( H_2 \)[/tex]. Therefore, the concentration of [tex]\( H_2 \)[/tex] will increase as the reaction shifts left.
Therefore, we conclude that:
The amount of [tex]\( H_2 \)[/tex] goes up.
Hence, the correct answer is:
A. The amount of [tex]\( H_2 \)[/tex] goes up.
[tex]\[ CO_2(g) + H_2(g) + \text{Energy} \rightleftharpoons CO(g) + H_2O(g) \][/tex]
In this equilibrium, the reaction can proceed in either direction:
- Forward: From [tex]\( CO_2(g) + H_2(g) + \text{Energy} \)[/tex] to [tex]\( CO(g) + H_2O(g) \)[/tex]
- Reverse: From [tex]\( CO(g) + H_2O(g) \)[/tex] to [tex]\( CO_2(g) + H_2(g) + \text{Energy} \)[/tex]
When we say that the reaction shifts to the left, we mean that it favors the reverse reaction. Since the left side of the reaction is being favored, more reactants ([tex]\( CO_2(g) \)[/tex] and [tex]\( H_2(g) \)[/tex]) are being formed, and the products ([tex]\( CO(g) \)[/tex] and [tex]\( H_2O(g) \)[/tex]) are being consumed.
Now, let's explore what happens to [tex]\( H_2 \)[/tex]:
1. Shift to the Left Explained: The shift to the left means that the reverse reaction is taking place more frequently, converting [tex]\( CO(g) \)[/tex] and [tex]\( H_2O(g) \)[/tex] back into [tex]\( CO_2(g) \)[/tex] and [tex]\( H_2(g) \)[/tex].
2. Formation of [tex]\( H_2 \)[/tex]: In the reverse reaction, [tex]\( CO \)[/tex] and [tex]\( H_2O \)[/tex] combine to form [tex]\( CO_2 \)[/tex] and [tex]\( H_2 \)[/tex]. Therefore, the concentration of [tex]\( H_2 \)[/tex] will increase as the reaction shifts left.
Therefore, we conclude that:
The amount of [tex]\( H_2 \)[/tex] goes up.
Hence, the correct answer is:
A. The amount of [tex]\( H_2 \)[/tex] goes up.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.