Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the value of [tex]\(\cos \left(\frac{\alpha+\beta}{2}\right)\)[/tex], given that [tex]\(\cos (\alpha+\beta) = 0\)[/tex], we can follow these steps:
1. Recognize the Relationship: First, we need to understand the relationship given by [tex]\(\cos (\alpha+\beta) = 0\)[/tex]. The cosine function is zero when its argument is an odd multiple of [tex]\(\frac{\pi}{2}\)[/tex]:
[tex]\[ \alpha + \beta = \frac{\pi}{2} + k\pi \][/tex]
where [tex]\(k\)[/tex] is any integer.
2. Simplification for Simplicity: Since [tex]\(\cos (\alpha+\beta)\)[/tex] is periodic with period [tex]\(2\pi\)[/tex], we can simplify our calculations by choosing the smallest positive multiple. This means:
[tex]\[ \alpha + \beta = \frac{\pi}{2} \][/tex]
3. Halving the Angle: Now, we need to calculate [tex]\(\cos \left(\frac{\alpha+\beta}{2}\right)\)[/tex]. Substitute the value we have from step 2:
[tex]\[ \frac{\alpha + \beta}{2} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4} \][/tex]
4. Calculate the Cosine Value: Finally, compute the cosine of [tex]\(\frac{\pi}{4}\)[/tex]:
[tex]\[ \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
In numerical form, the value of [tex]\(\frac{\sqrt{2}}{2}\)[/tex], which is a commonly known trigonometric value, is approximately:
[tex]\[ 0.7071067811865476 \][/tex]
Therefore, the value of [tex]\(\cos \left(\frac{\alpha + \beta}{2}\right)\)[/tex] is:
[tex]\[ 0.7071067811865476 \][/tex]
1. Recognize the Relationship: First, we need to understand the relationship given by [tex]\(\cos (\alpha+\beta) = 0\)[/tex]. The cosine function is zero when its argument is an odd multiple of [tex]\(\frac{\pi}{2}\)[/tex]:
[tex]\[ \alpha + \beta = \frac{\pi}{2} + k\pi \][/tex]
where [tex]\(k\)[/tex] is any integer.
2. Simplification for Simplicity: Since [tex]\(\cos (\alpha+\beta)\)[/tex] is periodic with period [tex]\(2\pi\)[/tex], we can simplify our calculations by choosing the smallest positive multiple. This means:
[tex]\[ \alpha + \beta = \frac{\pi}{2} \][/tex]
3. Halving the Angle: Now, we need to calculate [tex]\(\cos \left(\frac{\alpha+\beta}{2}\right)\)[/tex]. Substitute the value we have from step 2:
[tex]\[ \frac{\alpha + \beta}{2} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4} \][/tex]
4. Calculate the Cosine Value: Finally, compute the cosine of [tex]\(\frac{\pi}{4}\)[/tex]:
[tex]\[ \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
In numerical form, the value of [tex]\(\frac{\sqrt{2}}{2}\)[/tex], which is a commonly known trigonometric value, is approximately:
[tex]\[ 0.7071067811865476 \][/tex]
Therefore, the value of [tex]\(\cos \left(\frac{\alpha + \beta}{2}\right)\)[/tex] is:
[tex]\[ 0.7071067811865476 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.