Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the [tex]\(x\)[/tex]-intercepts of the quadratic function [tex]\(f(x) = (x + 6)(x - 3)\)[/tex], we need to determine the values of [tex]\(x\)[/tex] for which [tex]\(f(x) = 0\)[/tex].
Here are the detailed steps:
1. Set the function equal to zero:
[tex]\[ (x + 6)(x - 3) = 0 \][/tex]
2. Apply the zero-product property, which states that if a product of two factors is zero, then at least one of the factors must be zero:
[tex]\[ x + 6 = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]
3. Solve each equation for [tex]\(x\)[/tex]:
[tex]\[ x + 6 = 0 \quad \Rightarrow \quad x = -6 \][/tex]
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
These solutions give us the [tex]\(x\)[/tex]-values of the [tex]\(x\)[/tex]-intercepts. The [tex]\(x\)[/tex]-intercepts are the points where the graph crosses the [tex]\(x\)[/tex]-axis, and their coordinates are:
[tex]\[ (-6, 0) \quad \text{and} \quad (3, 0) \][/tex]
Among the given choices:
- [tex]\((0, -6)\)[/tex]: This point is not an [tex]\(x\)[/tex]-intercept.
- [tex]\((6, 0)\)[/tex]: This point is not an [tex]\(x\)[/tex]-intercept.
- [tex]\((-6, 0)\)[/tex]: This point is an [tex]\(x\)[/tex]-intercept.
Thus, the point [tex]\((-6, 0)\)[/tex] is an [tex]\(x\)[/tex]-intercept of the quadratic function [tex]\(f(x) = (x + 6)(x - 3)\)[/tex].
Here are the detailed steps:
1. Set the function equal to zero:
[tex]\[ (x + 6)(x - 3) = 0 \][/tex]
2. Apply the zero-product property, which states that if a product of two factors is zero, then at least one of the factors must be zero:
[tex]\[ x + 6 = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]
3. Solve each equation for [tex]\(x\)[/tex]:
[tex]\[ x + 6 = 0 \quad \Rightarrow \quad x = -6 \][/tex]
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
These solutions give us the [tex]\(x\)[/tex]-values of the [tex]\(x\)[/tex]-intercepts. The [tex]\(x\)[/tex]-intercepts are the points where the graph crosses the [tex]\(x\)[/tex]-axis, and their coordinates are:
[tex]\[ (-6, 0) \quad \text{and} \quad (3, 0) \][/tex]
Among the given choices:
- [tex]\((0, -6)\)[/tex]: This point is not an [tex]\(x\)[/tex]-intercept.
- [tex]\((6, 0)\)[/tex]: This point is not an [tex]\(x\)[/tex]-intercept.
- [tex]\((-6, 0)\)[/tex]: This point is an [tex]\(x\)[/tex]-intercept.
Thus, the point [tex]\((-6, 0)\)[/tex] is an [tex]\(x\)[/tex]-intercept of the quadratic function [tex]\(f(x) = (x + 6)(x - 3)\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.