Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's tackle each part of the question with detailed, step-by-step explanations.
### Scenario a: Exponential Growth
1. Initial Information:
- Initial cost of a gallon of milk: [tex]$2.00 - Monthly increase rate: 6.1% (which is 0.061 in decimal form) 2. Exponential Equation to Model the Cost Over Time: - The general form of an exponential growth equation is \(C = C_0 (1 + r)^x\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(r\) is the monthly rate of increase. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 (1 + 0.061)^x \] ### Scenario b: Linear Growth 1. Initial Information: - Initial cost of a gallon of milk: $[/tex]2.00
- Monthly increase amount: [tex]$0.138 2. Linear Equation to Model the Cost Over Time: - The general form of a linear growth equation is \(C = C_0 + mx\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(m\) is the monthly increase amount. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 + 0.138x \] ### Predicting the Cost After 12 Months: Next, we'll use both equations to predict the cost of a gallon of milk 12 months from July, which means \(x = 12\). #### For the Exponential Growth Equation: \[ C_{\text{exponential}} = 2.00 (1 + 0.061)^{12} \] After evaluating the expression, we know the cost after 12 months will be: \[ C_{\text{exponential}} = 4.070189245918128 \approx 4.07 \] So, the predicted cost of a gallon of milk in July (a year later) using the exponential model is approximately \$[/tex]4.07.
#### For the Linear Growth Equation:
[tex]\[ C_{\text{linear}} = 2.00 + 0.138 \times 12 \][/tex]
After evaluating the expression, we know the cost after 12 months will be:
[tex]\[ C_{\text{linear}} = 2.00 + 1.656 = 3.656 \approx 3.66 \][/tex]
So, the predicted cost of a gallon of milk in July (a year later) using the linear model is approximately \[tex]$3.66. ### Summary - Linear Prediction: \$[/tex]3.66
- Exponential Prediction: \$4.07
### Scenario a: Exponential Growth
1. Initial Information:
- Initial cost of a gallon of milk: [tex]$2.00 - Monthly increase rate: 6.1% (which is 0.061 in decimal form) 2. Exponential Equation to Model the Cost Over Time: - The general form of an exponential growth equation is \(C = C_0 (1 + r)^x\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(r\) is the monthly rate of increase. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 (1 + 0.061)^x \] ### Scenario b: Linear Growth 1. Initial Information: - Initial cost of a gallon of milk: $[/tex]2.00
- Monthly increase amount: [tex]$0.138 2. Linear Equation to Model the Cost Over Time: - The general form of a linear growth equation is \(C = C_0 + mx\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(m\) is the monthly increase amount. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 + 0.138x \] ### Predicting the Cost After 12 Months: Next, we'll use both equations to predict the cost of a gallon of milk 12 months from July, which means \(x = 12\). #### For the Exponential Growth Equation: \[ C_{\text{exponential}} = 2.00 (1 + 0.061)^{12} \] After evaluating the expression, we know the cost after 12 months will be: \[ C_{\text{exponential}} = 4.070189245918128 \approx 4.07 \] So, the predicted cost of a gallon of milk in July (a year later) using the exponential model is approximately \$[/tex]4.07.
#### For the Linear Growth Equation:
[tex]\[ C_{\text{linear}} = 2.00 + 0.138 \times 12 \][/tex]
After evaluating the expression, we know the cost after 12 months will be:
[tex]\[ C_{\text{linear}} = 2.00 + 1.656 = 3.656 \approx 3.66 \][/tex]
So, the predicted cost of a gallon of milk in July (a year later) using the linear model is approximately \[tex]$3.66. ### Summary - Linear Prediction: \$[/tex]3.66
- Exponential Prediction: \$4.07
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.