Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's tackle each part of the question with detailed, step-by-step explanations.
### Scenario a: Exponential Growth
1. Initial Information:
- Initial cost of a gallon of milk: [tex]$2.00 - Monthly increase rate: 6.1% (which is 0.061 in decimal form) 2. Exponential Equation to Model the Cost Over Time: - The general form of an exponential growth equation is \(C = C_0 (1 + r)^x\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(r\) is the monthly rate of increase. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 (1 + 0.061)^x \] ### Scenario b: Linear Growth 1. Initial Information: - Initial cost of a gallon of milk: $[/tex]2.00
- Monthly increase amount: [tex]$0.138 2. Linear Equation to Model the Cost Over Time: - The general form of a linear growth equation is \(C = C_0 + mx\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(m\) is the monthly increase amount. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 + 0.138x \] ### Predicting the Cost After 12 Months: Next, we'll use both equations to predict the cost of a gallon of milk 12 months from July, which means \(x = 12\). #### For the Exponential Growth Equation: \[ C_{\text{exponential}} = 2.00 (1 + 0.061)^{12} \] After evaluating the expression, we know the cost after 12 months will be: \[ C_{\text{exponential}} = 4.070189245918128 \approx 4.07 \] So, the predicted cost of a gallon of milk in July (a year later) using the exponential model is approximately \$[/tex]4.07.
#### For the Linear Growth Equation:
[tex]\[ C_{\text{linear}} = 2.00 + 0.138 \times 12 \][/tex]
After evaluating the expression, we know the cost after 12 months will be:
[tex]\[ C_{\text{linear}} = 2.00 + 1.656 = 3.656 \approx 3.66 \][/tex]
So, the predicted cost of a gallon of milk in July (a year later) using the linear model is approximately \[tex]$3.66. ### Summary - Linear Prediction: \$[/tex]3.66
- Exponential Prediction: \$4.07
### Scenario a: Exponential Growth
1. Initial Information:
- Initial cost of a gallon of milk: [tex]$2.00 - Monthly increase rate: 6.1% (which is 0.061 in decimal form) 2. Exponential Equation to Model the Cost Over Time: - The general form of an exponential growth equation is \(C = C_0 (1 + r)^x\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(r\) is the monthly rate of increase. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 (1 + 0.061)^x \] ### Scenario b: Linear Growth 1. Initial Information: - Initial cost of a gallon of milk: $[/tex]2.00
- Monthly increase amount: [tex]$0.138 2. Linear Equation to Model the Cost Over Time: - The general form of a linear growth equation is \(C = C_0 + mx\), where: - \(C\) is the cost after \(x\) months. - \(C_0\) is the initial cost. - \(m\) is the monthly increase amount. - \(x\) is the number of months. - Substituting the given values, we have: \[ C = 2.00 + 0.138x \] ### Predicting the Cost After 12 Months: Next, we'll use both equations to predict the cost of a gallon of milk 12 months from July, which means \(x = 12\). #### For the Exponential Growth Equation: \[ C_{\text{exponential}} = 2.00 (1 + 0.061)^{12} \] After evaluating the expression, we know the cost after 12 months will be: \[ C_{\text{exponential}} = 4.070189245918128 \approx 4.07 \] So, the predicted cost of a gallon of milk in July (a year later) using the exponential model is approximately \$[/tex]4.07.
#### For the Linear Growth Equation:
[tex]\[ C_{\text{linear}} = 2.00 + 0.138 \times 12 \][/tex]
After evaluating the expression, we know the cost after 12 months will be:
[tex]\[ C_{\text{linear}} = 2.00 + 1.656 = 3.656 \approx 3.66 \][/tex]
So, the predicted cost of a gallon of milk in July (a year later) using the linear model is approximately \[tex]$3.66. ### Summary - Linear Prediction: \$[/tex]3.66
- Exponential Prediction: \$4.07
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.