Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine what happens to the amount of [tex]\( \mathrm{H_2O} \)[/tex] when the reaction shifts to the left, we need to analyze the given chemical equilibrium:
[tex]\[ 2 \mathrm{NO(g)} + \mathrm{H_2(g)} \rightleftharpoons \mathrm{N_2O(g)} + \mathrm{H_2O(g)} + \text{heat} \][/tex]
1. Understand the shift direction:
- When a reaction shifts to the left, it means that the equilibrium is moving towards the reactants.
2. Identify the components involved:
- Reactants: [tex]\( 2 \mathrm{NO(g)} \)[/tex] and [tex]\( \mathrm{H_2(g)} \)[/tex]
- Products: [tex]\( \mathrm{N_2O(g)} \)[/tex] and [tex]\( \mathrm{H_2O(g)} \)[/tex]
- Heat is produced in the forward direction, which implies it is endothermic in the reverse direction.
3. Effect on quantities of substances:
- When the equilibrium shifts to the left, the reaction will produce more reactants ([tex]\( \mathrm{NO(g)} \)[/tex] and [tex]\( \mathrm{H_2(g)} \)[/tex]) and consume the products ([tex]\( \mathrm{N_2O(g)} \)[/tex] and [tex]\( \mathrm{H_2O(g)} \)[/tex]).
4. Specifically for [tex]\( \mathrm{H_2O(g)} \)[/tex]:
- Since shifting the reaction to the left implies moving towards the reactants and consuming more of the products, the amount of [tex]\( \mathrm{H_2O(g)} \)[/tex] will decrease as the reaction shifts to the left.
Thus, the correct answer is:
A. The amount of [tex]\( \mathrm{H_2O} \)[/tex] goes down.
[tex]\[ 2 \mathrm{NO(g)} + \mathrm{H_2(g)} \rightleftharpoons \mathrm{N_2O(g)} + \mathrm{H_2O(g)} + \text{heat} \][/tex]
1. Understand the shift direction:
- When a reaction shifts to the left, it means that the equilibrium is moving towards the reactants.
2. Identify the components involved:
- Reactants: [tex]\( 2 \mathrm{NO(g)} \)[/tex] and [tex]\( \mathrm{H_2(g)} \)[/tex]
- Products: [tex]\( \mathrm{N_2O(g)} \)[/tex] and [tex]\( \mathrm{H_2O(g)} \)[/tex]
- Heat is produced in the forward direction, which implies it is endothermic in the reverse direction.
3. Effect on quantities of substances:
- When the equilibrium shifts to the left, the reaction will produce more reactants ([tex]\( \mathrm{NO(g)} \)[/tex] and [tex]\( \mathrm{H_2(g)} \)[/tex]) and consume the products ([tex]\( \mathrm{N_2O(g)} \)[/tex] and [tex]\( \mathrm{H_2O(g)} \)[/tex]).
4. Specifically for [tex]\( \mathrm{H_2O(g)} \)[/tex]:
- Since shifting the reaction to the left implies moving towards the reactants and consuming more of the products, the amount of [tex]\( \mathrm{H_2O(g)} \)[/tex] will decrease as the reaction shifts to the left.
Thus, the correct answer is:
A. The amount of [tex]\( \mathrm{H_2O} \)[/tex] goes down.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.