Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's go through the steps to understand and solve the problem.
Given:
[tex]\[ x = 7 + 5\sqrt{2} \][/tex]
We need to determine [tex]\( \sqrt[3]{x} - 1 \)[/tex].
1. Calculate [tex]\( x \)[/tex]:
Since [tex]\( x = 7 + 5\sqrt{2} \)[/tex], we already have it in its defined form.
- [tex]\( 7 \)[/tex] is a rational number.
- [tex]\( 5\sqrt{2} \)[/tex] contains an irrational part because [tex]\( \sqrt{2} \)[/tex] is an irrational number.
So, [tex]\( x \)[/tex] is a combination of a rational and an irrational number, which means [tex]\( x \)[/tex] itself is an irrational number.
2. Find the cube root of [tex]\( x \)[/tex]:
To find [tex]\( \sqrt[3]{x} \)[/tex], we consider the cube root of the irrational number [tex]\( x \)[/tex].
3. Subtract 1 from the cube root of [tex]\( x \)[/tex]:
Let [tex]\( y = \sqrt[3]{x} - 1 \)[/tex]
Since [tex]\( x \)[/tex] is irrationational:
- The cube root [tex]\( \sqrt[3]{x} \)[/tex] is also an irrational number, as the cube root of an irrational number often remains irrational.
- Subtracting 1 from an irrational number still keeps it irrational.
Thus, [tex]\( y \)[/tex] is an irrational number, which means that [tex]\( \sqrt[3]{x} - 1 \)[/tex] is a surd.
Given Answer: After going through the provided steps, we find that the calculated numerical value for [tex]\( \sqrt[3]{7 + 5\sqrt{2}} - 1 \)[/tex] is approximately [tex]\( 1.414213562373095 \)[/tex].
Since the result [tex]\( 1.414213562373095 \)[/tex] is the value for [tex]\( \sqrt[3]{7 + 5\sqrt{2}} - 1 \)[/tex], let's analyze it in context of the options provided:
1. Whether [tex]\( 1.414213562373095 \approx \sqrt{3} \)[/tex]?
- No, because [tex]\( \sqrt{3} \approx 1.732 \)[/tex]
2. Whether [tex]\( 1.414213562373095 \approx \sqrt{5} \)[/tex]?
- No, because [tex]\( \sqrt{5} \approx 2.236 \)[/tex]
Finally, the result of [tex]\( \sqrt[3]{x} - 1 \)[/tex] was shown to be irrational, denoted as a surd here.
Conclusion: Neither [tex]\( \sqrt{3} \)[/tex] nor [tex]\( \sqrt{5} \)[/tex] matches the obtained result exactly.
Therefore, the correct conclusion is:
- [tex]\( \sqrt[3]{7 + 5\sqrt{2}} - 1 \approx 1.414213562373095 \)[/tex]
- And neither [tex]\( \sqrt{3} \)[/tex] nor [tex]\( \sqrt{5} \)[/tex] are the exact matches. Both numbers mentioned are indeed surds.
Given:
[tex]\[ x = 7 + 5\sqrt{2} \][/tex]
We need to determine [tex]\( \sqrt[3]{x} - 1 \)[/tex].
1. Calculate [tex]\( x \)[/tex]:
Since [tex]\( x = 7 + 5\sqrt{2} \)[/tex], we already have it in its defined form.
- [tex]\( 7 \)[/tex] is a rational number.
- [tex]\( 5\sqrt{2} \)[/tex] contains an irrational part because [tex]\( \sqrt{2} \)[/tex] is an irrational number.
So, [tex]\( x \)[/tex] is a combination of a rational and an irrational number, which means [tex]\( x \)[/tex] itself is an irrational number.
2. Find the cube root of [tex]\( x \)[/tex]:
To find [tex]\( \sqrt[3]{x} \)[/tex], we consider the cube root of the irrational number [tex]\( x \)[/tex].
3. Subtract 1 from the cube root of [tex]\( x \)[/tex]:
Let [tex]\( y = \sqrt[3]{x} - 1 \)[/tex]
Since [tex]\( x \)[/tex] is irrationational:
- The cube root [tex]\( \sqrt[3]{x} \)[/tex] is also an irrational number, as the cube root of an irrational number often remains irrational.
- Subtracting 1 from an irrational number still keeps it irrational.
Thus, [tex]\( y \)[/tex] is an irrational number, which means that [tex]\( \sqrt[3]{x} - 1 \)[/tex] is a surd.
Given Answer: After going through the provided steps, we find that the calculated numerical value for [tex]\( \sqrt[3]{7 + 5\sqrt{2}} - 1 \)[/tex] is approximately [tex]\( 1.414213562373095 \)[/tex].
Since the result [tex]\( 1.414213562373095 \)[/tex] is the value for [tex]\( \sqrt[3]{7 + 5\sqrt{2}} - 1 \)[/tex], let's analyze it in context of the options provided:
1. Whether [tex]\( 1.414213562373095 \approx \sqrt{3} \)[/tex]?
- No, because [tex]\( \sqrt{3} \approx 1.732 \)[/tex]
2. Whether [tex]\( 1.414213562373095 \approx \sqrt{5} \)[/tex]?
- No, because [tex]\( \sqrt{5} \approx 2.236 \)[/tex]
Finally, the result of [tex]\( \sqrt[3]{x} - 1 \)[/tex] was shown to be irrational, denoted as a surd here.
Conclusion: Neither [tex]\( \sqrt{3} \)[/tex] nor [tex]\( \sqrt{5} \)[/tex] matches the obtained result exactly.
Therefore, the correct conclusion is:
- [tex]\( \sqrt[3]{7 + 5\sqrt{2}} - 1 \approx 1.414213562373095 \)[/tex]
- And neither [tex]\( \sqrt{3} \)[/tex] nor [tex]\( \sqrt{5} \)[/tex] are the exact matches. Both numbers mentioned are indeed surds.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.