Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the equation [tex]\(16^x = 64^{x+4}\)[/tex], let's go through the steps to find the solutions.
Given equation:
[tex]\[ 16^x = 64^{x+4} \][/tex]
First, express both sides of the equation with a common base. Notice that [tex]\(16\)[/tex] and [tex]\(64\)[/tex] can both be written as powers of [tex]\(2\)[/tex]:
[tex]\[ 16 = 2^4 \][/tex]
[tex]\[ 64 = 2^6 \][/tex]
Therefore, rewrite the equation as:
[tex]\[ (2^4)^x = (2^6)^{x+4} \][/tex]
This simplifies to:
[tex]\[ 2^{4x} = 2^{6(x+4)} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 4x = 6(x + 4) \][/tex]
Expand and simplify the equation:
[tex]\[ 4x = 6x + 24 \][/tex]
Subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 4x - 6x = 24 \][/tex]
[tex]\[ -2x = 24 \][/tex]
Divide both sides by [tex]\(-2\)[/tex]:
[tex]\[ x = -12 \][/tex]
Thus, [tex]\(x = -12\)[/tex] is indeed one of the solutions.
The second solution seems to be more complex and contains a logarithmic term. Therefore, there is another solution:
[tex]\[ x = \frac{-\log(4096) + i\pi}{\log(2)} \][/tex]
However, only the real solution from our equation is [tex]\(x = -12\)[/tex].
Therefore, the only real value of [tex]\(x\)[/tex] that is a solution to the equation [tex]\(16^x = 64^{x+4}\)[/tex] is:
[tex]\[ x = -12 \][/tex]
Given equation:
[tex]\[ 16^x = 64^{x+4} \][/tex]
First, express both sides of the equation with a common base. Notice that [tex]\(16\)[/tex] and [tex]\(64\)[/tex] can both be written as powers of [tex]\(2\)[/tex]:
[tex]\[ 16 = 2^4 \][/tex]
[tex]\[ 64 = 2^6 \][/tex]
Therefore, rewrite the equation as:
[tex]\[ (2^4)^x = (2^6)^{x+4} \][/tex]
This simplifies to:
[tex]\[ 2^{4x} = 2^{6(x+4)} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 4x = 6(x + 4) \][/tex]
Expand and simplify the equation:
[tex]\[ 4x = 6x + 24 \][/tex]
Subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 4x - 6x = 24 \][/tex]
[tex]\[ -2x = 24 \][/tex]
Divide both sides by [tex]\(-2\)[/tex]:
[tex]\[ x = -12 \][/tex]
Thus, [tex]\(x = -12\)[/tex] is indeed one of the solutions.
The second solution seems to be more complex and contains a logarithmic term. Therefore, there is another solution:
[tex]\[ x = \frac{-\log(4096) + i\pi}{\log(2)} \][/tex]
However, only the real solution from our equation is [tex]\(x = -12\)[/tex].
Therefore, the only real value of [tex]\(x\)[/tex] that is a solution to the equation [tex]\(16^x = 64^{x+4}\)[/tex] is:
[tex]\[ x = -12 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.