Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the given quadratic equation [tex]\(3t^2 - 5t = 0\)[/tex], we need to find the discriminant and determine the nature of the solutions. Here's how we can do that step-by-step:
1. Identify the coefficients:
The given quadratic equation is in the form [tex]\(at^2 + bt + c = 0\)[/tex]. Here:
- [tex]\(a = 3\)[/tex]
- [tex]\(b = -5\)[/tex]
- [tex]\(c = 0\)[/tex]
2. Calculate the discriminant:
The discriminant ([tex]\(\Delta\)[/tex]) of a quadratic equation [tex]\(at^2 + bt + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
In our case, we substitute [tex]\(a = 3\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = 0\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4 \cdot 3 \cdot 0 \][/tex]
[tex]\[ \Delta = 25 - 0 \][/tex]
[tex]\[ \Delta = 25 \][/tex]
3. Determine the nature of the solutions:
The nature of the solutions depends on the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two different real-number solutions.
- If [tex]\(\Delta = 0\)[/tex], there is one real-number solution.
- If [tex]\(\Delta < 0\)[/tex], there are two different imaginary number solutions.
Since [tex]\(\Delta = 25\)[/tex] and [tex]\(25 > 0\)[/tex], the quadratic equation [tex]\(3t^2 - 5t = 0\)[/tex] has two different real-number solutions.
So, the discriminant of [tex]\(3t^2 - 5t = 0\)[/tex] is [tex]\(25\)[/tex], and the equation has two different real-number solutions.
1. Identify the coefficients:
The given quadratic equation is in the form [tex]\(at^2 + bt + c = 0\)[/tex]. Here:
- [tex]\(a = 3\)[/tex]
- [tex]\(b = -5\)[/tex]
- [tex]\(c = 0\)[/tex]
2. Calculate the discriminant:
The discriminant ([tex]\(\Delta\)[/tex]) of a quadratic equation [tex]\(at^2 + bt + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
In our case, we substitute [tex]\(a = 3\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = 0\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4 \cdot 3 \cdot 0 \][/tex]
[tex]\[ \Delta = 25 - 0 \][/tex]
[tex]\[ \Delta = 25 \][/tex]
3. Determine the nature of the solutions:
The nature of the solutions depends on the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two different real-number solutions.
- If [tex]\(\Delta = 0\)[/tex], there is one real-number solution.
- If [tex]\(\Delta < 0\)[/tex], there are two different imaginary number solutions.
Since [tex]\(\Delta = 25\)[/tex] and [tex]\(25 > 0\)[/tex], the quadratic equation [tex]\(3t^2 - 5t = 0\)[/tex] has two different real-number solutions.
So, the discriminant of [tex]\(3t^2 - 5t = 0\)[/tex] is [tex]\(25\)[/tex], and the equation has two different real-number solutions.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.