Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

For the following, find the discriminant, [tex]b^2 - 4ac[/tex], and then determine whether there is one real-number solution, two different real-number solutions, or two different imaginary-number solutions.

[tex]
3t^2 - 5t = 0
[/tex]

Sagot :

To solve the given quadratic equation [tex]\(3t^2 - 5t = 0\)[/tex], we need to find the discriminant and determine the nature of the solutions. Here's how we can do that step-by-step:

1. Identify the coefficients:
The given quadratic equation is in the form [tex]\(at^2 + bt + c = 0\)[/tex]. Here:
- [tex]\(a = 3\)[/tex]
- [tex]\(b = -5\)[/tex]
- [tex]\(c = 0\)[/tex]

2. Calculate the discriminant:
The discriminant ([tex]\(\Delta\)[/tex]) of a quadratic equation [tex]\(at^2 + bt + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
In our case, we substitute [tex]\(a = 3\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = 0\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4 \cdot 3 \cdot 0 \][/tex]
[tex]\[ \Delta = 25 - 0 \][/tex]
[tex]\[ \Delta = 25 \][/tex]

3. Determine the nature of the solutions:
The nature of the solutions depends on the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two different real-number solutions.
- If [tex]\(\Delta = 0\)[/tex], there is one real-number solution.
- If [tex]\(\Delta < 0\)[/tex], there are two different imaginary number solutions.

Since [tex]\(\Delta = 25\)[/tex] and [tex]\(25 > 0\)[/tex], the quadratic equation [tex]\(3t^2 - 5t = 0\)[/tex] has two different real-number solutions.

So, the discriminant of [tex]\(3t^2 - 5t = 0\)[/tex] is [tex]\(25\)[/tex], and the equation has two different real-number solutions.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.