Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Work out an approximate solution to [tex]$x^3 + 2x - 1 = 0$[/tex].

Use the iteration [tex]$x_{n+1} = \frac{1}{x_n^2 + 2}$[/tex].

Start with [tex][tex]$x_1 = 1$[/tex][/tex].

Give your answer to 2 decimal places.


Sagot :

Certainly! Let's work through the iteration process used to approximate the solution to the equation [tex]\(x^3 + 2x - 1 = 0\)[/tex].

1. Initial Setup:
- We start with an initial guess, [tex]\( x_1 = 1 \)[/tex].
- We use the iteration formula [tex]\( x_{n+1} = \frac{1}{x_n^2 + 2} \)[/tex].
- To determine convergence, we stop the iterations when the absolute difference between successive iterations is less than a tolerance level, which we'll set to [tex]\( 1 \times 10^{-5} \)[/tex] for accuracy to two decimal places.

2. Iteration Process:
- Compute the following sequence until the change between consecutive terms is very small:

[tex]\[ \begin{align*} x_1 &= 1 \\ x_2 &= \frac{1}{x_1^2 + 2} = \frac{1}{1^2 + 2} = \frac{1}{3} \approx 0.3333 \\ x_3 &= \frac{1}{x_2^2 + 2} = \frac{1}{(0.3333)^2 + 2} \approx \frac{1}{0.1111 + 2} \approx \frac{1}{2.1111} \approx 0.4737 \\ x_4 &= \frac{1}{x_3^2 + 2} = \frac{1}{(0.4737)^2 + 2} \approx \frac{1}{0.2244 + 2} \approx \frac{1}{2.2244} \approx 0.4498 \\ \vdots \end{align*} \][/tex]

3. Checking for Convergence:
- We continue this iteration process, updating [tex]\( x_n \)[/tex] each time, until [tex]\( \left| x_{n+1} - x_n \right| \)[/tex] is less than [tex]\( 1 \times 10^{-5} \)[/tex].

4. Final Result:
- After several iterations, the sequence converges to a value that does not significantly change with further iterations. The value stabilizes and we can round to two decimal places.
- After sufficient iterations, we obtain [tex]\( x \approx 0.45 \)[/tex].

Thus, the approximate solution to the equation [tex]\( x^3 + 2x - 1 = 0 \)[/tex] is [tex]\( \boxed{0.45} \)[/tex], correct to two decimal places.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.