Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's work through the iteration process used to approximate the solution to the equation [tex]\(x^3 + 2x - 1 = 0\)[/tex].
1. Initial Setup:
- We start with an initial guess, [tex]\( x_1 = 1 \)[/tex].
- We use the iteration formula [tex]\( x_{n+1} = \frac{1}{x_n^2 + 2} \)[/tex].
- To determine convergence, we stop the iterations when the absolute difference between successive iterations is less than a tolerance level, which we'll set to [tex]\( 1 \times 10^{-5} \)[/tex] for accuracy to two decimal places.
2. Iteration Process:
- Compute the following sequence until the change between consecutive terms is very small:
[tex]\[ \begin{align*} x_1 &= 1 \\ x_2 &= \frac{1}{x_1^2 + 2} = \frac{1}{1^2 + 2} = \frac{1}{3} \approx 0.3333 \\ x_3 &= \frac{1}{x_2^2 + 2} = \frac{1}{(0.3333)^2 + 2} \approx \frac{1}{0.1111 + 2} \approx \frac{1}{2.1111} \approx 0.4737 \\ x_4 &= \frac{1}{x_3^2 + 2} = \frac{1}{(0.4737)^2 + 2} \approx \frac{1}{0.2244 + 2} \approx \frac{1}{2.2244} \approx 0.4498 \\ \vdots \end{align*} \][/tex]
3. Checking for Convergence:
- We continue this iteration process, updating [tex]\( x_n \)[/tex] each time, until [tex]\( \left| x_{n+1} - x_n \right| \)[/tex] is less than [tex]\( 1 \times 10^{-5} \)[/tex].
4. Final Result:
- After several iterations, the sequence converges to a value that does not significantly change with further iterations. The value stabilizes and we can round to two decimal places.
- After sufficient iterations, we obtain [tex]\( x \approx 0.45 \)[/tex].
Thus, the approximate solution to the equation [tex]\( x^3 + 2x - 1 = 0 \)[/tex] is [tex]\( \boxed{0.45} \)[/tex], correct to two decimal places.
1. Initial Setup:
- We start with an initial guess, [tex]\( x_1 = 1 \)[/tex].
- We use the iteration formula [tex]\( x_{n+1} = \frac{1}{x_n^2 + 2} \)[/tex].
- To determine convergence, we stop the iterations when the absolute difference between successive iterations is less than a tolerance level, which we'll set to [tex]\( 1 \times 10^{-5} \)[/tex] for accuracy to two decimal places.
2. Iteration Process:
- Compute the following sequence until the change between consecutive terms is very small:
[tex]\[ \begin{align*} x_1 &= 1 \\ x_2 &= \frac{1}{x_1^2 + 2} = \frac{1}{1^2 + 2} = \frac{1}{3} \approx 0.3333 \\ x_3 &= \frac{1}{x_2^2 + 2} = \frac{1}{(0.3333)^2 + 2} \approx \frac{1}{0.1111 + 2} \approx \frac{1}{2.1111} \approx 0.4737 \\ x_4 &= \frac{1}{x_3^2 + 2} = \frac{1}{(0.4737)^2 + 2} \approx \frac{1}{0.2244 + 2} \approx \frac{1}{2.2244} \approx 0.4498 \\ \vdots \end{align*} \][/tex]
3. Checking for Convergence:
- We continue this iteration process, updating [tex]\( x_n \)[/tex] each time, until [tex]\( \left| x_{n+1} - x_n \right| \)[/tex] is less than [tex]\( 1 \times 10^{-5} \)[/tex].
4. Final Result:
- After several iterations, the sequence converges to a value that does not significantly change with further iterations. The value stabilizes and we can round to two decimal places.
- After sufficient iterations, we obtain [tex]\( x \approx 0.45 \)[/tex].
Thus, the approximate solution to the equation [tex]\( x^3 + 2x - 1 = 0 \)[/tex] is [tex]\( \boxed{0.45} \)[/tex], correct to two decimal places.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.