At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The volume of a cubical box is [tex]$19683 \, \text{cm}^3$[/tex]. Find the length of its side in meters.

Sagot :

Sure, let's solve this step-by-step:

1. Given Data:
- Volume of the cubical box: [tex]\( 19683 \, \text{cm}^3 \)[/tex]

2. Formula for the volume of a cube:
The volume [tex]\( V \)[/tex] of a cube with side length [tex]\( s \)[/tex] is given by:
[tex]\[ V = s^3 \][/tex]

3. Find the side length in centimeters:
To find the side length [tex]\( s \)[/tex] in centimeters, we solve for [tex]\( s \)[/tex] from the volume formula:
[tex]\[ s = \sqrt[3]{V} = \sqrt[3]{19683 \, \text{cm}^3} \][/tex]
Evaluating the cube root of [tex]\( 19683 \, \text{cm}^3 \)[/tex], we get:
[tex]\[ s \approx 26.999999999999996 \, \text{cm} \][/tex]

4. Convert the side length to meters:
Since [tex]\( 1 \, \text{meter} = 100 \, \text{centimeters} \)[/tex], we need to convert the side length from centimeters to meters:
[tex]\[ s \, \text{(in meters)} = \frac{s \, \text{(in centimeters)}}{100} \][/tex]
[tex]\[ s \, \text{(in meters)} = \frac{26.999999999999996 \, \text{cm}}{100} \][/tex]
[tex]\[ s \approx 0.26999999999999996 \, \text{meters} \][/tex]

Thus, the length of the side of the cubical box in meters is approximately [tex]\( 0.27 \)[/tex] meters.