Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Identify the oxidation half-reaction for this reaction:
[tex] Mg (s) + ZnCl_2 (aq) \rightarrow MgCl_2 (aq) + Zn (s) [/tex]

A. [tex] Mg (s) \rightarrow Mg^{2+} + 2e^{-} [/tex]

B. [tex] Mg^{2+} + 2e^{-} \rightarrow Mg (s) [/tex]

C. [tex] Zn^{2+} + 2e^{-} \rightarrow Zn (s) [/tex]

D. [tex] Zn (s) \rightarrow Zn^{2+} + 2e^{-} [/tex]


Sagot :

To determine the oxidation half-reaction for the given chemical reaction:
[tex]\[ \text{Mg (s)} + \text{ZnCl}_2 \text{(aq)} \rightarrow \text{MgCl}_2 \text{(aq)} + \text{Zn (s)} \][/tex]
we need to identify which substance is being oxidized, i.e., which substance loses electrons.

In oxidation-reduction (redox) reactions, oxidation is defined as the loss of electrons. Let's analyze the changes in oxidation states:

1. Identify the Initial and Final States:
- Magnesium (Mg) starts in the solid state as an elemental substance, so it has an oxidation state of 0.
- In the product, magnesium is in the form of [tex]\(\text{MgCl}_2\)[/tex], which means magnesium is now in the form of [tex]\(\text{Mg}^{2+}\)[/tex], indicating an oxidation state of +2.
- Zinc chloride ([tex]\(\text{ZnCl}_2\)[/tex]) contains zinc as [tex]\(\text{Zn}^{2+}\)[/tex] initially.
- In the product, zinc is in the solid state as elemental zinc (Zn), with an oxidation state of 0.

2. Determine the Changes in Oxidation States:
- Magnesium (Mg) goes from 0 to +2, indicating a loss of 2 electrons ([tex]\(2e^-\)[/tex]).
- Zinc ([tex]\(\text{Zn}^{2+}\)[/tex]) goes from +2 to 0, indicating a gain of 2 electrons ([tex]\(2e^-\)[/tex]).

3. Write the Half-Reactions:
- The oxidation half-reaction involves magnesium losing electrons:
[tex]\[ \text{Mg (s)} \rightarrow \text{Mg}^{2+} + 2e^- \][/tex]
This represents the oxidation process since magnesium is losing electrons.
- The reduction half-reaction for zinc (which is not the answer we seek for this question) would be:
[tex]\[ \text{Zn}^{2+} + 2e^- \rightarrow \text{Zn (s)} \][/tex]

Given this analysis, the correct oxidation half-reaction is:
[tex]\[ \text{Mg (s)} \rightarrow \text{Mg}^{2+} + 2e^- \][/tex]

This corresponds to choice A. So, the answer is A.