Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the inequality [tex]\(-3 < 2x + 1 \leq 11 - 3x\)[/tex], we will break it down into two separate parts and solve each part step by step.
### Step 1: Solving [tex]\(-3 < 2x + 1\)[/tex]
1. Subtract 1 from both sides:
[tex]\[ -3 - 1 < 2x \][/tex]
Simplifying the left-hand side, we get:
[tex]\[ -4 < 2x \][/tex]
2. Divide both sides by 2:
[tex]\[ \frac{-4}{2} < x \][/tex]
Simplifying, we obtain:
[tex]\[ -2 < x \][/tex]
### Step 2: Solving [tex]\(2x + 1 \leq 11 - 3x\)[/tex]
1. Subtract [tex]\(1\)[/tex] from both sides:
[tex]\[ 2x + 1 - 1 \leq 11 - 3x - 1 \][/tex]
Simplifying, we get:
[tex]\[ 2x \leq 10 - 3x \][/tex]
2. Add [tex]\(3x\)[/tex] to both sides to gather all [tex]\(x\)[/tex] terms on one side:
[tex]\[ 2x + 3x \leq 10 \][/tex]
Simplifying, we have:
[tex]\[ 5x \leq 10 \][/tex]
3. Divide both sides by 5:
[tex]\[ x \leq \frac{10}{5} \][/tex]
Simplifying, we get:
[tex]\[ x \leq 2 \][/tex]
### Combining the Results
Now, we combine the results from both inequalities:
- From the first inequality, we have [tex]\( -2 < x \)[/tex].
- From the second inequality, we have [tex]\( x \leq 2 \)[/tex].
Combining these gives us the final solution:
[tex]\[ -2 < x \leq 2 \][/tex]
### Conclusion
The solution to the inequality [tex]\( -3 < 2x + 1 \leq 11 - 3x \)[/tex] is:
[tex]\[ D: -2 < x \leq 2 \][/tex]
### Step 1: Solving [tex]\(-3 < 2x + 1\)[/tex]
1. Subtract 1 from both sides:
[tex]\[ -3 - 1 < 2x \][/tex]
Simplifying the left-hand side, we get:
[tex]\[ -4 < 2x \][/tex]
2. Divide both sides by 2:
[tex]\[ \frac{-4}{2} < x \][/tex]
Simplifying, we obtain:
[tex]\[ -2 < x \][/tex]
### Step 2: Solving [tex]\(2x + 1 \leq 11 - 3x\)[/tex]
1. Subtract [tex]\(1\)[/tex] from both sides:
[tex]\[ 2x + 1 - 1 \leq 11 - 3x - 1 \][/tex]
Simplifying, we get:
[tex]\[ 2x \leq 10 - 3x \][/tex]
2. Add [tex]\(3x\)[/tex] to both sides to gather all [tex]\(x\)[/tex] terms on one side:
[tex]\[ 2x + 3x \leq 10 \][/tex]
Simplifying, we have:
[tex]\[ 5x \leq 10 \][/tex]
3. Divide both sides by 5:
[tex]\[ x \leq \frac{10}{5} \][/tex]
Simplifying, we get:
[tex]\[ x \leq 2 \][/tex]
### Combining the Results
Now, we combine the results from both inequalities:
- From the first inequality, we have [tex]\( -2 < x \)[/tex].
- From the second inequality, we have [tex]\( x \leq 2 \)[/tex].
Combining these gives us the final solution:
[tex]\[ -2 < x \leq 2 \][/tex]
### Conclusion
The solution to the inequality [tex]\( -3 < 2x + 1 \leq 11 - 3x \)[/tex] is:
[tex]\[ D: -2 < x \leq 2 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.