Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's go through the detailed step-by-step solution for each part of the question.
### Given Data:
- Total number of homes, [tex]\( N \)[/tex] = 850
- Number of homes listed for more than 90 days before being sold ([tex]\( A \)[/tex]) = 200
- Number of homes with an initial asking price under [tex]$150,000 (\( B \)) = 110 - Number of homes with an initial asking price under $[/tex]150,000 and listed for more than 90 days ([tex]\( A \cap B \)[/tex]) = 20
### Part (a):
Event [tex]\( A \)[/tex]: A home is listed for more than 90 days before being sold.
The probability of event [tex]\( A \)[/tex] can be estimated as the ratio of homes listed for more than 90 days to the total number of homes.
[tex]\[ P(A) = \frac{\text{Number of homes listed for more than 90 days}}{\text{Total number of homes}} \][/tex]
[tex]\[ P(A) = \frac{200}{850} \][/tex]
[tex]\[ P(A) = 0.24 \][/tex]
So, the probability of [tex]\( A \)[/tex] is [tex]\( 0.24 \)[/tex].
### Part (b):
Event [tex]\( B \)[/tex]: The initial asking price of the home is under [tex]$150,000. The probability of event \( B \) can be estimated as the ratio of homes with an initial asking price under $[/tex]150,000 to the total number of homes.
[tex]\[ P(B) = \frac{\text{Number of homes with an initial asking price under $150,000}}{\text{Total number of homes}} \][/tex]
[tex]\[ P(B) = \frac{110}{850} \][/tex]
[tex]\[ P(B) \approx 0.129 \][/tex]
So, the probability of [tex]\( B \)[/tex] is [tex]\( 0.129 \)[/tex].
### Part (c):
Event [tex]\( A \cap B \)[/tex]: The home is listed for more than 90 days and has an initial asking price under [tex]$150,000. The probability of event \( A \cap B \) can be estimated as the ratio of homes listed for more than 90 days with an initial asking price under $[/tex]150,000 to the total number of homes.
[tex]\[ P(A \cap B) = \frac{\text{Number of homes listed for more than 90 days and under $150,000}}{\text{Total number of homes}} \][/tex]
[tex]\[ P(A \cap B) = \frac{20}{850} \][/tex]
[tex]\[ P(A \cap B) \approx 0.0235 \][/tex]
So, the probability of [tex]\( A \cap B \)[/tex] is [tex]\( 0.0235 \)[/tex].
### Part (d):
Conditional Probability [tex]\( P(A|B) \)[/tex]: The probability that a home will take more than 90 days to sell given that the initial asking price is under [tex]$150,000. This can be estimated using the formula for conditional probability: \[ P(A|B) = \frac{P(A \cap B)}{P(B)} \] From parts (b) and (c): \[ P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.0235}{0.129} \] \[ P(A|B) \approx 0.18 \] So, the probability that a home will take more than 90 days to sell given that the initial asking price is under $[/tex]150,000 is [tex]\( 0.18 \)[/tex].
Therefore, the detailed probabilities for each part are:
- [tex]\( P(A) = 0.24 \)[/tex]
- [tex]\( P(B) = 0.129 \)[/tex]
- [tex]\( P(A \cap B) = 0.0235 \)[/tex]
- [tex]\( P(A|B) = 0.18 \)[/tex]
### Given Data:
- Total number of homes, [tex]\( N \)[/tex] = 850
- Number of homes listed for more than 90 days before being sold ([tex]\( A \)[/tex]) = 200
- Number of homes with an initial asking price under [tex]$150,000 (\( B \)) = 110 - Number of homes with an initial asking price under $[/tex]150,000 and listed for more than 90 days ([tex]\( A \cap B \)[/tex]) = 20
### Part (a):
Event [tex]\( A \)[/tex]: A home is listed for more than 90 days before being sold.
The probability of event [tex]\( A \)[/tex] can be estimated as the ratio of homes listed for more than 90 days to the total number of homes.
[tex]\[ P(A) = \frac{\text{Number of homes listed for more than 90 days}}{\text{Total number of homes}} \][/tex]
[tex]\[ P(A) = \frac{200}{850} \][/tex]
[tex]\[ P(A) = 0.24 \][/tex]
So, the probability of [tex]\( A \)[/tex] is [tex]\( 0.24 \)[/tex].
### Part (b):
Event [tex]\( B \)[/tex]: The initial asking price of the home is under [tex]$150,000. The probability of event \( B \) can be estimated as the ratio of homes with an initial asking price under $[/tex]150,000 to the total number of homes.
[tex]\[ P(B) = \frac{\text{Number of homes with an initial asking price under $150,000}}{\text{Total number of homes}} \][/tex]
[tex]\[ P(B) = \frac{110}{850} \][/tex]
[tex]\[ P(B) \approx 0.129 \][/tex]
So, the probability of [tex]\( B \)[/tex] is [tex]\( 0.129 \)[/tex].
### Part (c):
Event [tex]\( A \cap B \)[/tex]: The home is listed for more than 90 days and has an initial asking price under [tex]$150,000. The probability of event \( A \cap B \) can be estimated as the ratio of homes listed for more than 90 days with an initial asking price under $[/tex]150,000 to the total number of homes.
[tex]\[ P(A \cap B) = \frac{\text{Number of homes listed for more than 90 days and under $150,000}}{\text{Total number of homes}} \][/tex]
[tex]\[ P(A \cap B) = \frac{20}{850} \][/tex]
[tex]\[ P(A \cap B) \approx 0.0235 \][/tex]
So, the probability of [tex]\( A \cap B \)[/tex] is [tex]\( 0.0235 \)[/tex].
### Part (d):
Conditional Probability [tex]\( P(A|B) \)[/tex]: The probability that a home will take more than 90 days to sell given that the initial asking price is under [tex]$150,000. This can be estimated using the formula for conditional probability: \[ P(A|B) = \frac{P(A \cap B)}{P(B)} \] From parts (b) and (c): \[ P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.0235}{0.129} \] \[ P(A|B) \approx 0.18 \] So, the probability that a home will take more than 90 days to sell given that the initial asking price is under $[/tex]150,000 is [tex]\( 0.18 \)[/tex].
Therefore, the detailed probabilities for each part are:
- [tex]\( P(A) = 0.24 \)[/tex]
- [tex]\( P(B) = 0.129 \)[/tex]
- [tex]\( P(A \cap B) = 0.0235 \)[/tex]
- [tex]\( P(A|B) = 0.18 \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.