Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve each equation step-by-step and round the answers to the nearest hundredth.
### 1. Solving [tex]\( e^x = 2 \)[/tex]:
To solve for [tex]\( x \)[/tex] in the equation [tex]\( e^x = 2 \)[/tex], we can use logarithms. Specifically, we will use the natural logarithm (denoted as [tex]\( \ln \)[/tex]), which is the logarithm base [tex]\( e \)[/tex].
Step-by-step:
1. Take the natural logarithm of both sides:
[tex]\[ \ln(e^x) = \ln(2) \][/tex]
2. Apply the logarithm power rule (i.e., [tex]\( \ln(a^b) = b\ln(a) \)[/tex]) to simplify the left-hand side:
[tex]\[ x \cdot \ln(e) = \ln(2) \][/tex]
3. Since [tex]\( \ln(e) = 1 \)[/tex]:
[tex]\[ x = \ln(2) \][/tex]
Using precise mathematical tools, the value of [tex]\( \ln(2) \)[/tex] is approximately 0.693147. When we round this to the nearest hundredth, we get:
[tex]\[ x \approx 0.69 \][/tex]
### 2. Solving [tex]\( 5^{y+8} = 3 \)[/tex]:
To solve for [tex]\( y \)[/tex] in the equation [tex]\( 5^{y+8} = 3 \)[/tex], we use logarithms again, but this time we can use logarithms to any base. For simplicity, we'll use the logarithm to the base 5, denoted as [tex]\( \log_5 \)[/tex].
Step-by-step:
1. Take the logarithm base 5 of both sides:
[tex]\[ \log_5(5^{y+8}) = \log_5(3) \][/tex]
2. Apply the logarithm power rule (i.e., [tex]\( \log_b(a^c) = c\log_b(a) \)[/tex]) to simplify the left-hand side:
[tex]\[ (y+8) \cdot \log_5(5) = \log_5(3) \][/tex]
3. Since [tex]\( \log_5(5) = 1 \)[/tex]:
[tex]\[ y + 8 = \log_5(3) \][/tex]
4. To isolate [tex]\( y \)[/tex], subtract 8 from both sides:
[tex]\[ y = \log_5(3) - 8 \][/tex]
The value of [tex]\( \log_5(3) \)[/tex] is approximately 0.682606. Subsequently:
[tex]\[ \log_5(3) - 8 \approx 0.682606 - 8 = -7.317394 \][/tex]
When we round this to the nearest hundredth, we get:
[tex]\[ y \approx -7.32 \][/tex]
### Final Answers:
[tex]\[ \begin{array}{l} x \approx 0.69 \\ y \approx -7.32 \end{array} \][/tex]
### 1. Solving [tex]\( e^x = 2 \)[/tex]:
To solve for [tex]\( x \)[/tex] in the equation [tex]\( e^x = 2 \)[/tex], we can use logarithms. Specifically, we will use the natural logarithm (denoted as [tex]\( \ln \)[/tex]), which is the logarithm base [tex]\( e \)[/tex].
Step-by-step:
1. Take the natural logarithm of both sides:
[tex]\[ \ln(e^x) = \ln(2) \][/tex]
2. Apply the logarithm power rule (i.e., [tex]\( \ln(a^b) = b\ln(a) \)[/tex]) to simplify the left-hand side:
[tex]\[ x \cdot \ln(e) = \ln(2) \][/tex]
3. Since [tex]\( \ln(e) = 1 \)[/tex]:
[tex]\[ x = \ln(2) \][/tex]
Using precise mathematical tools, the value of [tex]\( \ln(2) \)[/tex] is approximately 0.693147. When we round this to the nearest hundredth, we get:
[tex]\[ x \approx 0.69 \][/tex]
### 2. Solving [tex]\( 5^{y+8} = 3 \)[/tex]:
To solve for [tex]\( y \)[/tex] in the equation [tex]\( 5^{y+8} = 3 \)[/tex], we use logarithms again, but this time we can use logarithms to any base. For simplicity, we'll use the logarithm to the base 5, denoted as [tex]\( \log_5 \)[/tex].
Step-by-step:
1. Take the logarithm base 5 of both sides:
[tex]\[ \log_5(5^{y+8}) = \log_5(3) \][/tex]
2. Apply the logarithm power rule (i.e., [tex]\( \log_b(a^c) = c\log_b(a) \)[/tex]) to simplify the left-hand side:
[tex]\[ (y+8) \cdot \log_5(5) = \log_5(3) \][/tex]
3. Since [tex]\( \log_5(5) = 1 \)[/tex]:
[tex]\[ y + 8 = \log_5(3) \][/tex]
4. To isolate [tex]\( y \)[/tex], subtract 8 from both sides:
[tex]\[ y = \log_5(3) - 8 \][/tex]
The value of [tex]\( \log_5(3) \)[/tex] is approximately 0.682606. Subsequently:
[tex]\[ \log_5(3) - 8 \approx 0.682606 - 8 = -7.317394 \][/tex]
When we round this to the nearest hundredth, we get:
[tex]\[ y \approx -7.32 \][/tex]
### Final Answers:
[tex]\[ \begin{array}{l} x \approx 0.69 \\ y \approx -7.32 \end{array} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.