Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the problem step by step.
### Given Values
- The airplane travels at a speed of [tex]\( 400 \sqrt{3} \)[/tex] km/hr.
- The time it takes to look to the right after seeing the lake is [tex]\( 15 \)[/tex] minutes.
- The angle they have to tilt their head is [tex]\( 30^\circ \)[/tex].
### Convert Time to Hours
First, convert the time from minutes to hours because the speed is given in km/hr.
[tex]\[ \text{Time} = \frac{15 \text{ minutes}}{60} = 0.25 \text{ hours} \][/tex]
### Calculate the Distance Traveled
To find the distance the airplane has traveled in those 15 minutes, we use the formula:
[tex]\[ \text{Distance} = \text{Speed} \times \text{Time} \][/tex]
Substituting the given values:
[tex]\[ \text{Distance} = 400 \sqrt{3} \, \text{km/hr} \times 0.25 \, \text{hr} \][/tex]
[tex]\[ \text{Distance} = 100 \sqrt{3} \, \text{km} \][/tex]
[tex]\[ \text{Distance} \approx 173.205 \, \text{km} \][/tex]
### Calculate the Height of the Airplane
The person tilts their head by [tex]\( 30^\circ \)[/tex] to see the lake, meaning we can use trigonometry to find the height of the airplane.
We will use the tangent function since we know the adjacent side (distance traveled) and we want to find the opposite side (height):
[tex]\[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \][/tex]
Rearranging to solve for the opposite side (height):
[tex]\[ \text{Height} = \text{Distance} \times \tan(30^\circ) \][/tex]
Substituting the values:
[tex]\[ \text{Height} = 173.205 \, \text{km} \times \tan(30^\circ) \][/tex]
Since [tex]\( \tan(30^\circ) = \frac{1}{\sqrt{3}} \)[/tex]:
[tex]\[ \text{Height} = 173.205 \, \text{km} \times \frac{1}{\sqrt{3}} \][/tex]
[tex]\[ \text{Height} = 173.205 \, \text{km} \times \frac{\sqrt{3}}{3} \][/tex]
[tex]\[ \text{Height} = 100 \, \text{km} \][/tex]
### Summary of Results
- Distance traveled by airplane (horizontal distance): approximately [tex]\( 173.205 \)[/tex] km
- Height of the airplane above the ground: approximately [tex]\( 100 \)[/tex] km
So, the airplane is flying at a height of approximately 100 km above the ground, and the lake is approximately 173.205 km away horizontally from the point where the person initially saw it.
### Given Values
- The airplane travels at a speed of [tex]\( 400 \sqrt{3} \)[/tex] km/hr.
- The time it takes to look to the right after seeing the lake is [tex]\( 15 \)[/tex] minutes.
- The angle they have to tilt their head is [tex]\( 30^\circ \)[/tex].
### Convert Time to Hours
First, convert the time from minutes to hours because the speed is given in km/hr.
[tex]\[ \text{Time} = \frac{15 \text{ minutes}}{60} = 0.25 \text{ hours} \][/tex]
### Calculate the Distance Traveled
To find the distance the airplane has traveled in those 15 minutes, we use the formula:
[tex]\[ \text{Distance} = \text{Speed} \times \text{Time} \][/tex]
Substituting the given values:
[tex]\[ \text{Distance} = 400 \sqrt{3} \, \text{km/hr} \times 0.25 \, \text{hr} \][/tex]
[tex]\[ \text{Distance} = 100 \sqrt{3} \, \text{km} \][/tex]
[tex]\[ \text{Distance} \approx 173.205 \, \text{km} \][/tex]
### Calculate the Height of the Airplane
The person tilts their head by [tex]\( 30^\circ \)[/tex] to see the lake, meaning we can use trigonometry to find the height of the airplane.
We will use the tangent function since we know the adjacent side (distance traveled) and we want to find the opposite side (height):
[tex]\[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \][/tex]
Rearranging to solve for the opposite side (height):
[tex]\[ \text{Height} = \text{Distance} \times \tan(30^\circ) \][/tex]
Substituting the values:
[tex]\[ \text{Height} = 173.205 \, \text{km} \times \tan(30^\circ) \][/tex]
Since [tex]\( \tan(30^\circ) = \frac{1}{\sqrt{3}} \)[/tex]:
[tex]\[ \text{Height} = 173.205 \, \text{km} \times \frac{1}{\sqrt{3}} \][/tex]
[tex]\[ \text{Height} = 173.205 \, \text{km} \times \frac{\sqrt{3}}{3} \][/tex]
[tex]\[ \text{Height} = 100 \, \text{km} \][/tex]
### Summary of Results
- Distance traveled by airplane (horizontal distance): approximately [tex]\( 173.205 \)[/tex] km
- Height of the airplane above the ground: approximately [tex]\( 100 \)[/tex] km
So, the airplane is flying at a height of approximately 100 km above the ground, and the lake is approximately 173.205 km away horizontally from the point where the person initially saw it.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.