Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]

---

(c) [tex]\(\sin 3\theta = 3\sin \theta - 4\sin^3 \theta\)[/tex]


Sagot :

To determine whether the trigonometric identity [tex]\(\sin(3\theta) = 3 \sin(\theta) - 4 \sin^3(\theta)\)[/tex] is true, let’s examine both sides of the equation separately and then compare them.

### Step-by-Step Solution:

#### Step 1: Define the Identity
Consider the trigonometric identity [tex]\(\sin(3\theta)\)[/tex]:
[tex]\[ \sin(3\theta) \][/tex]

#### Step 2: Express the Left-Hand Side (LHS)
The left-hand side (LHS) of the equation is:
[tex]\[ \sin(3\theta) \][/tex]

#### Step 3: Express the Right-Hand Side (RHS)
The right-hand side (RHS) of the equation is given by:
[tex]\[ 3 \sin(\theta) - 4 \sin^3(\theta) \][/tex]

#### Step 4: Compare the Sides
To prove the identity, we need to show that:
[tex]\[ \sin(3\theta) = 3 \sin(\theta) - 4 \sin^3(\theta) \][/tex]

#### Step 5: Verification
One way to verify whether these expressions are indeed equivalent is to use trigonometric identities. Fortunately, [tex]\(\sin(3 \theta)\)[/tex] has a known trigonometric identity which states:
[tex]\[ \sin(3\theta) = 3 \sin(\theta) - 4 \sin^3(\theta) \][/tex]

### Conclusion
By the known trigonometric identity, the expression for [tex]\(\sin(3\theta)\)[/tex] indeed matches the right-hand side expression [tex]\(3 \sin(\theta) - 4 \sin^3(\theta)\)[/tex]. Therefore, the identity is true, and we have:
[tex]\[ \sin(3\theta) = 3 \sin(\theta) - 4 \sin^3(\theta) \][/tex]

Hence, the trigonometric identity [tex]\(\sin(3\theta) = 3 \sin(\theta) - 4 \sin^3(\theta)\)[/tex] is verified as correct.