Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let's go through a step-by-step factorization of the polynomial [tex]\( 5x^3 + 35x^2 + 6x + 42 \)[/tex].
The polynomial is given as:
[tex]\[ 5x^3 + 35x^2 + 6x + 42 \][/tex]
First, identify the task. We need to factor this polynomial completely and find the values of [tex]\(A\)[/tex] and [tex]\(B\)[/tex] in the form [tex]\((5x^2 + A)(x + B)\)[/tex].
We can start by noting that [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are constants. Thus, if we multiply [tex]\((5x^2 + A)\)[/tex] by [tex]\((x + B)\)[/tex], it should yield the original polynomial. Let's distribute [tex]\((x + B)\)[/tex] through [tex]\((5x^2 + A)\)[/tex]:
[tex]\[ (5x^2 + A)(x + B) = 5x^2 \cdot x + 5x^2 \cdot B + A \cdot x + A \cdot B \][/tex]
Expanding this, we get:
[tex]\[ = 5x^3 + 5Bx^2 + Ax + AB \][/tex]
Now, let's align this with the original polynomial terms. This should equal:
[tex]\[ 5x^3 + 35x^2 + 6x + 42 \][/tex]
By comparing the coefficients, we match:
1. The coefficient of [tex]\(x^3\)[/tex] is already 5, which matches with [tex]\(5\)[/tex].
2. The coefficient of [tex]\(x^2\)[/tex] is given by [tex]\(5B = 35\)[/tex]. Solving for [tex]\(B\)[/tex]:
[tex]\[ 5B = 35 \implies B = 7 \][/tex]
3. The coefficient of [tex]\(x\)[/tex] is [tex]\(A\)[/tex], which is supposed to be [tex]\(6\)[/tex], so:
[tex]\[ A = 6 \][/tex]
4. Finally, [tex]\(AB\)[/tex] should match the constant term 42:
[tex]\[ (6)(7) = 42 \][/tex]
So, we have successfully matched all terms, and the values are consistent. Thus, the value of [tex]\(A\)[/tex] is:
[tex]\[ \boxed{6} \][/tex]
The polynomial is given as:
[tex]\[ 5x^3 + 35x^2 + 6x + 42 \][/tex]
First, identify the task. We need to factor this polynomial completely and find the values of [tex]\(A\)[/tex] and [tex]\(B\)[/tex] in the form [tex]\((5x^2 + A)(x + B)\)[/tex].
We can start by noting that [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are constants. Thus, if we multiply [tex]\((5x^2 + A)\)[/tex] by [tex]\((x + B)\)[/tex], it should yield the original polynomial. Let's distribute [tex]\((x + B)\)[/tex] through [tex]\((5x^2 + A)\)[/tex]:
[tex]\[ (5x^2 + A)(x + B) = 5x^2 \cdot x + 5x^2 \cdot B + A \cdot x + A \cdot B \][/tex]
Expanding this, we get:
[tex]\[ = 5x^3 + 5Bx^2 + Ax + AB \][/tex]
Now, let's align this with the original polynomial terms. This should equal:
[tex]\[ 5x^3 + 35x^2 + 6x + 42 \][/tex]
By comparing the coefficients, we match:
1. The coefficient of [tex]\(x^3\)[/tex] is already 5, which matches with [tex]\(5\)[/tex].
2. The coefficient of [tex]\(x^2\)[/tex] is given by [tex]\(5B = 35\)[/tex]. Solving for [tex]\(B\)[/tex]:
[tex]\[ 5B = 35 \implies B = 7 \][/tex]
3. The coefficient of [tex]\(x\)[/tex] is [tex]\(A\)[/tex], which is supposed to be [tex]\(6\)[/tex], so:
[tex]\[ A = 6 \][/tex]
4. Finally, [tex]\(AB\)[/tex] should match the constant term 42:
[tex]\[ (6)(7) = 42 \][/tex]
So, we have successfully matched all terms, and the values are consistent. Thus, the value of [tex]\(A\)[/tex] is:
[tex]\[ \boxed{6} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.