Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the compound inequality [tex]\(x - 2 < -11\)[/tex] or [tex]\(-3x \leq -18\)[/tex], let's solve each part step-by-step:
### Part 1: [tex]\(x - 2 < -11\)[/tex]
1. Start with the inequality:
[tex]\[ x - 2 < -11 \][/tex]
2. Add 2 to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x - 2 + 2 < -11 + 2 \][/tex]
[tex]\[ x < -9 \][/tex]
### Part 2: [tex]\(-3x \leq -18\)[/tex]
1. Start with the inequality:
[tex]\[ -3x \leq -18 \][/tex]
2. Divide both sides by -3. Remember to reverse the inequality symbol when dividing by a negative number:
[tex]\[ x \geq \frac{-18}{-3} \][/tex]
[tex]\[ x \geq 6 \][/tex]
### Combining the Inequalities
Now that we have solved each individual inequality, we combine the results. The solution to the original compound inequality [tex]\(x - 2 < -11\)[/tex] or [tex]\(-3x \leq -18\)[/tex] is:
[tex]\[ x < -9 \quad \text{or} \quad x \geq 6 \][/tex]
So, the final solution is:
[tex]\[ x < -9 \quad \text{or} \quad x \geq 6 \][/tex]
This means that [tex]\(x\)[/tex] can be any number less than -9 or any number greater than or equal to 6.
### Part 1: [tex]\(x - 2 < -11\)[/tex]
1. Start with the inequality:
[tex]\[ x - 2 < -11 \][/tex]
2. Add 2 to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x - 2 + 2 < -11 + 2 \][/tex]
[tex]\[ x < -9 \][/tex]
### Part 2: [tex]\(-3x \leq -18\)[/tex]
1. Start with the inequality:
[tex]\[ -3x \leq -18 \][/tex]
2. Divide both sides by -3. Remember to reverse the inequality symbol when dividing by a negative number:
[tex]\[ x \geq \frac{-18}{-3} \][/tex]
[tex]\[ x \geq 6 \][/tex]
### Combining the Inequalities
Now that we have solved each individual inequality, we combine the results. The solution to the original compound inequality [tex]\(x - 2 < -11\)[/tex] or [tex]\(-3x \leq -18\)[/tex] is:
[tex]\[ x < -9 \quad \text{or} \quad x \geq 6 \][/tex]
So, the final solution is:
[tex]\[ x < -9 \quad \text{or} \quad x \geq 6 \][/tex]
This means that [tex]\(x\)[/tex] can be any number less than -9 or any number greater than or equal to 6.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.