Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\(64^{3x} = 512^{2x + 12}\)[/tex], we begin by expressing the bases (64 and 512) as powers of 2.
1. [tex]\(64 = 2^6\)[/tex], so [tex]\(64^{3x} = (2^6)^{3x} = 2^{18x}\)[/tex].
2. [tex]\(512 = 2^9\)[/tex], so [tex]\(512^{2x + 12} = (2^9)^{2x + 12} = 2^{9(2x + 12)}\)[/tex].
Now, the original equation [tex]\(64^{3x} = 512^{2x + 12}\)[/tex] becomes:
[tex]\[2^{18x} = 2^{9(2x + 12)}\][/tex]
Since the bases are both 2, we can set the exponents equal to each other:
[tex]\[18x = 9(2x + 12)\][/tex]
Next, distribute the 9 on the right-hand side:
[tex]\[18x = 18x + 108\][/tex]
Subtract [tex]\(18x\)[/tex] from both sides:
[tex]\[18x - 18x = 108\][/tex]
[tex]\[0 = 108\][/tex]
This results in a contradiction, as [tex]\(0\)[/tex] cannot equal [tex]\(108\)[/tex]. Therefore, there is no value of [tex]\(x\)[/tex] that satisfies the equation [tex]\(64^{3x} = 512^{2x + 12}\)[/tex].
As a result, the correct answer is:
[tex]\[ \boxed{\text{no solution}} \][/tex]
1. [tex]\(64 = 2^6\)[/tex], so [tex]\(64^{3x} = (2^6)^{3x} = 2^{18x}\)[/tex].
2. [tex]\(512 = 2^9\)[/tex], so [tex]\(512^{2x + 12} = (2^9)^{2x + 12} = 2^{9(2x + 12)}\)[/tex].
Now, the original equation [tex]\(64^{3x} = 512^{2x + 12}\)[/tex] becomes:
[tex]\[2^{18x} = 2^{9(2x + 12)}\][/tex]
Since the bases are both 2, we can set the exponents equal to each other:
[tex]\[18x = 9(2x + 12)\][/tex]
Next, distribute the 9 on the right-hand side:
[tex]\[18x = 18x + 108\][/tex]
Subtract [tex]\(18x\)[/tex] from both sides:
[tex]\[18x - 18x = 108\][/tex]
[tex]\[0 = 108\][/tex]
This results in a contradiction, as [tex]\(0\)[/tex] cannot equal [tex]\(108\)[/tex]. Therefore, there is no value of [tex]\(x\)[/tex] that satisfies the equation [tex]\(64^{3x} = 512^{2x + 12}\)[/tex].
As a result, the correct answer is:
[tex]\[ \boxed{\text{no solution}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.