Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the value of [tex]\( x \)[/tex] at which the maximum loading occurs for the given loading distribution function [tex]\( w = -36x^2 + 50x \)[/tex], we can follow these steps:
1. Find the First Derivative:
First, calculate the first derivative of [tex]\( w \)[/tex] with respect to [tex]\( x \)[/tex] to determine the critical points. The first derivative, denoted as [tex]\( w' \)[/tex], is given by:
[tex]\[ w' = \frac{d}{dx}(-36x^2 + 50x) \][/tex]
Using the power rule of differentiation, we get:
[tex]\[ w' = -72x + 50 \][/tex]
2. Find the Critical Points:
Next, set the first derivative equal to zero to find the critical points:
[tex]\[ -72x + 50 = 0 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ 72x = 50 \implies x = \frac{50}{72} = \frac{25}{36} \][/tex]
So, the critical point we have is [tex]\( x = \frac{25}{36} \)[/tex].
3. Find the Second Derivative:
To use the second derivative test, we need to find the second derivative of [tex]\( w \)[/tex] with respect to [tex]\( x \)[/tex]. The second derivative, denoted as [tex]\( w'' \)[/tex], is given by:
[tex]\[ w'' = \frac{d}{dx}(-72x + 50) \][/tex]
Since the derivative of a constant is zero, we get:
[tex]\[ w'' = -72 \][/tex]
4. Apply the Second Derivative Test:
The second derivative test states that if [tex]\( w''(x) < 0 \)[/tex] at a critical point, then [tex]\( w \)[/tex] has a local maximum at that point.
Since [tex]\( w'' = -72 \)[/tex] which is less than zero, it confirms that the function [tex]\( w \)[/tex] has a local maximum at [tex]\( x = \frac{25}{36} \)[/tex].
Therefore, the value of [tex]\( x \)[/tex] at which the maximum loading occurs is [tex]\( \frac{25}{36} \)[/tex] meters.
1. Find the First Derivative:
First, calculate the first derivative of [tex]\( w \)[/tex] with respect to [tex]\( x \)[/tex] to determine the critical points. The first derivative, denoted as [tex]\( w' \)[/tex], is given by:
[tex]\[ w' = \frac{d}{dx}(-36x^2 + 50x) \][/tex]
Using the power rule of differentiation, we get:
[tex]\[ w' = -72x + 50 \][/tex]
2. Find the Critical Points:
Next, set the first derivative equal to zero to find the critical points:
[tex]\[ -72x + 50 = 0 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ 72x = 50 \implies x = \frac{50}{72} = \frac{25}{36} \][/tex]
So, the critical point we have is [tex]\( x = \frac{25}{36} \)[/tex].
3. Find the Second Derivative:
To use the second derivative test, we need to find the second derivative of [tex]\( w \)[/tex] with respect to [tex]\( x \)[/tex]. The second derivative, denoted as [tex]\( w'' \)[/tex], is given by:
[tex]\[ w'' = \frac{d}{dx}(-72x + 50) \][/tex]
Since the derivative of a constant is zero, we get:
[tex]\[ w'' = -72 \][/tex]
4. Apply the Second Derivative Test:
The second derivative test states that if [tex]\( w''(x) < 0 \)[/tex] at a critical point, then [tex]\( w \)[/tex] has a local maximum at that point.
Since [tex]\( w'' = -72 \)[/tex] which is less than zero, it confirms that the function [tex]\( w \)[/tex] has a local maximum at [tex]\( x = \frac{25}{36} \)[/tex].
Therefore, the value of [tex]\( x \)[/tex] at which the maximum loading occurs is [tex]\( \frac{25}{36} \)[/tex] meters.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.