Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

For the given L.P.P.:

[tex]\[ Z_{\max } = x_1 + \frac{3}{2} x_2 \][/tex]

subject to
[tex]\[ \begin{array}{ll}
x_1 + x_2 \leq 80 \\
x_1 + 2x_2 \leq 120 \\
2x_1 + x_2 \leq 140 \\
x_1, x_2 \geq 0
\end{array} \][/tex]

Find the values of [tex]\( C_2 \)[/tex] for which the present solution will still be optimal.


Sagot :

To solve the given Linear Programming Problem (L.P.P.) and determine the range of values for [tex]\( C_2 \)[/tex] that keeps the current solution optimal, we need to follow the steps below:

### Step 1: Identify the constraints and the objective function
The given L.P.P. is:
[tex]\[ Z_{\max } = x_1 + \frac{3}{2} x_2 \][/tex]
subject to:
[tex]\[ x_1 + x_2 \leq 80 \quad \text{(1)} \][/tex]
[tex]\[ x_1 + 2 x_2 \leq 120 \quad \text{(2)} \][/tex]
[tex]\[ 2 x_1 + x_2 \leq 140 \quad \text{(3)} \][/tex]
with
[tex]\[ x_1, x_2 \geq 0. \][/tex]

### Step 2: Determine the feasible region
We need to determine the intersection points of the constraint lines. Solving pairs of linear equations will provide the vertices of the feasible region.

#### Intersection of Constraints (1) and (2):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ x_1 + 2 x_2 = 120 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (x_1 + 2 x_2) - (x_1 + x_2) = 120 - 80 \\ x_2 = 40 \\ x_1 + 40 = 80 \\ x_1 = 40 \][/tex]
So, the intersection point is [tex]\( (40, 40) \)[/tex].

#### Intersection of Constraints (1) and (3):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (2 x_1 + x_2) - (x_1 + x_2) = 140 - 80 \\ x_1 = 60 \\ 60 + x_2 = 80 \\ x_2 = 20 \][/tex]
So, the intersection point is [tex]\( (60, 20) \)[/tex].

#### Intersection of Constraints (2) and (3):
[tex]\[ \begin{cases} x_1 + 2 x_2 = 120 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Multiplying the first equation by 2:
[tex]\[ 2 x_1 + 4 x_2 = 240 \\ 2 x_1 + x_2 = 140 \][/tex]
Subtracting the second from the first:
[tex]\[ (2 x_1 + 4 x_2) - (2 x_1 + x_2) = 240 - 140 \\ 3 x_2 = 100 \\ x_2 = \frac{100}{3} \approx 33.33 \][/tex]
Substitute [tex]\( x_2 \)[/tex] into the second equation:
[tex]\[ 2 x_1 + \frac{100}{3} = 140 \\ 2 x_1 = 140 - \frac{100}{3} \\ 2 x_1 = \frac{320}{3} \\ x_1 = \frac{160}{3} \approx 53.33 \][/tex]
So, the intersection point is [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex].

### Step 3: Evaluate the Objective Function at Vertices
Calculate [tex]\( Z_{\max} \)[/tex] at the vertices:
1. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 0 + \frac{3}{2} \times 0 = 0 \][/tex]
2. At [tex]\( (40, 40) \)[/tex]:
[tex]\[ Z = 40 + \frac{3}{2} \times 40 = 40 + 60 = 100 \][/tex]
3. At [tex]\( (60, 20) \)[/tex]:
[tex]\[ Z = 60 + \frac{3}{2} \times 20 = 60 + 30 = 90 \][/tex]
4. At [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex]:
[tex]\[ Z = \frac{160}{3} + \frac{3}{2} \times \frac{100}{3} = \frac{160}{3} + \frac{150}{3} = \frac{310}{3} \approx 103.33 \][/tex]

### Step 4: Optimal Solution and Determination of [tex]\( C_2 \)[/tex]
The current optimal solution is at [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] with [tex]\( Z = 103.33 \)[/tex].

When the objective function changes to:
[tex]\[ Z_{\max } = x1 + C_2 x2 \][/tex]

We need this vertex to remain optimal:
[tex]\[ Z = \left(\frac{160}{3}\right) + C_2 \left(\frac{100}{3}\right) = 103.33 \][/tex]

Therefore:
[tex]\[ \frac{160}{3} + C_2 \left(\frac{100}{3}\right) \leq 103.33 \][/tex]

To determine the exact range:
1. Rewrite the relation:
[tex]\[ \frac{160 + 100 C_2 }{3} = 103.33 \][/tex]
[tex]\[ 160 + 100 C_2 = 310 \][/tex]
[tex]\[ 100 C_2 = 150 \][/tex]
[tex]\[ C_2 = 1.5 \][/tex]

Thus, this indicates that for [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] to remain optimal, [tex]\( C_2 \leq 1.5 \)[/tex].

So, the present solution will be optimal within the range of [tex]\( C_2 \leq 1.5 \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.