Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the given Linear Programming Problem (L.P.P.) and determine the range of values for [tex]\( C_2 \)[/tex] that keeps the current solution optimal, we need to follow the steps below:
### Step 1: Identify the constraints and the objective function
The given L.P.P. is:
[tex]\[ Z_{\max } = x_1 + \frac{3}{2} x_2 \][/tex]
subject to:
[tex]\[ x_1 + x_2 \leq 80 \quad \text{(1)} \][/tex]
[tex]\[ x_1 + 2 x_2 \leq 120 \quad \text{(2)} \][/tex]
[tex]\[ 2 x_1 + x_2 \leq 140 \quad \text{(3)} \][/tex]
with
[tex]\[ x_1, x_2 \geq 0. \][/tex]
### Step 2: Determine the feasible region
We need to determine the intersection points of the constraint lines. Solving pairs of linear equations will provide the vertices of the feasible region.
#### Intersection of Constraints (1) and (2):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ x_1 + 2 x_2 = 120 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (x_1 + 2 x_2) - (x_1 + x_2) = 120 - 80 \\ x_2 = 40 \\ x_1 + 40 = 80 \\ x_1 = 40 \][/tex]
So, the intersection point is [tex]\( (40, 40) \)[/tex].
#### Intersection of Constraints (1) and (3):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (2 x_1 + x_2) - (x_1 + x_2) = 140 - 80 \\ x_1 = 60 \\ 60 + x_2 = 80 \\ x_2 = 20 \][/tex]
So, the intersection point is [tex]\( (60, 20) \)[/tex].
#### Intersection of Constraints (2) and (3):
[tex]\[ \begin{cases} x_1 + 2 x_2 = 120 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Multiplying the first equation by 2:
[tex]\[ 2 x_1 + 4 x_2 = 240 \\ 2 x_1 + x_2 = 140 \][/tex]
Subtracting the second from the first:
[tex]\[ (2 x_1 + 4 x_2) - (2 x_1 + x_2) = 240 - 140 \\ 3 x_2 = 100 \\ x_2 = \frac{100}{3} \approx 33.33 \][/tex]
Substitute [tex]\( x_2 \)[/tex] into the second equation:
[tex]\[ 2 x_1 + \frac{100}{3} = 140 \\ 2 x_1 = 140 - \frac{100}{3} \\ 2 x_1 = \frac{320}{3} \\ x_1 = \frac{160}{3} \approx 53.33 \][/tex]
So, the intersection point is [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex].
### Step 3: Evaluate the Objective Function at Vertices
Calculate [tex]\( Z_{\max} \)[/tex] at the vertices:
1. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 0 + \frac{3}{2} \times 0 = 0 \][/tex]
2. At [tex]\( (40, 40) \)[/tex]:
[tex]\[ Z = 40 + \frac{3}{2} \times 40 = 40 + 60 = 100 \][/tex]
3. At [tex]\( (60, 20) \)[/tex]:
[tex]\[ Z = 60 + \frac{3}{2} \times 20 = 60 + 30 = 90 \][/tex]
4. At [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex]:
[tex]\[ Z = \frac{160}{3} + \frac{3}{2} \times \frac{100}{3} = \frac{160}{3} + \frac{150}{3} = \frac{310}{3} \approx 103.33 \][/tex]
### Step 4: Optimal Solution and Determination of [tex]\( C_2 \)[/tex]
The current optimal solution is at [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] with [tex]\( Z = 103.33 \)[/tex].
When the objective function changes to:
[tex]\[ Z_{\max } = x1 + C_2 x2 \][/tex]
We need this vertex to remain optimal:
[tex]\[ Z = \left(\frac{160}{3}\right) + C_2 \left(\frac{100}{3}\right) = 103.33 \][/tex]
Therefore:
[tex]\[ \frac{160}{3} + C_2 \left(\frac{100}{3}\right) \leq 103.33 \][/tex]
To determine the exact range:
1. Rewrite the relation:
[tex]\[ \frac{160 + 100 C_2 }{3} = 103.33 \][/tex]
[tex]\[ 160 + 100 C_2 = 310 \][/tex]
[tex]\[ 100 C_2 = 150 \][/tex]
[tex]\[ C_2 = 1.5 \][/tex]
Thus, this indicates that for [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] to remain optimal, [tex]\( C_2 \leq 1.5 \)[/tex].
So, the present solution will be optimal within the range of [tex]\( C_2 \leq 1.5 \)[/tex].
### Step 1: Identify the constraints and the objective function
The given L.P.P. is:
[tex]\[ Z_{\max } = x_1 + \frac{3}{2} x_2 \][/tex]
subject to:
[tex]\[ x_1 + x_2 \leq 80 \quad \text{(1)} \][/tex]
[tex]\[ x_1 + 2 x_2 \leq 120 \quad \text{(2)} \][/tex]
[tex]\[ 2 x_1 + x_2 \leq 140 \quad \text{(3)} \][/tex]
with
[tex]\[ x_1, x_2 \geq 0. \][/tex]
### Step 2: Determine the feasible region
We need to determine the intersection points of the constraint lines. Solving pairs of linear equations will provide the vertices of the feasible region.
#### Intersection of Constraints (1) and (2):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ x_1 + 2 x_2 = 120 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (x_1 + 2 x_2) - (x_1 + x_2) = 120 - 80 \\ x_2 = 40 \\ x_1 + 40 = 80 \\ x_1 = 40 \][/tex]
So, the intersection point is [tex]\( (40, 40) \)[/tex].
#### Intersection of Constraints (1) and (3):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (2 x_1 + x_2) - (x_1 + x_2) = 140 - 80 \\ x_1 = 60 \\ 60 + x_2 = 80 \\ x_2 = 20 \][/tex]
So, the intersection point is [tex]\( (60, 20) \)[/tex].
#### Intersection of Constraints (2) and (3):
[tex]\[ \begin{cases} x_1 + 2 x_2 = 120 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Multiplying the first equation by 2:
[tex]\[ 2 x_1 + 4 x_2 = 240 \\ 2 x_1 + x_2 = 140 \][/tex]
Subtracting the second from the first:
[tex]\[ (2 x_1 + 4 x_2) - (2 x_1 + x_2) = 240 - 140 \\ 3 x_2 = 100 \\ x_2 = \frac{100}{3} \approx 33.33 \][/tex]
Substitute [tex]\( x_2 \)[/tex] into the second equation:
[tex]\[ 2 x_1 + \frac{100}{3} = 140 \\ 2 x_1 = 140 - \frac{100}{3} \\ 2 x_1 = \frac{320}{3} \\ x_1 = \frac{160}{3} \approx 53.33 \][/tex]
So, the intersection point is [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex].
### Step 3: Evaluate the Objective Function at Vertices
Calculate [tex]\( Z_{\max} \)[/tex] at the vertices:
1. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 0 + \frac{3}{2} \times 0 = 0 \][/tex]
2. At [tex]\( (40, 40) \)[/tex]:
[tex]\[ Z = 40 + \frac{3}{2} \times 40 = 40 + 60 = 100 \][/tex]
3. At [tex]\( (60, 20) \)[/tex]:
[tex]\[ Z = 60 + \frac{3}{2} \times 20 = 60 + 30 = 90 \][/tex]
4. At [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex]:
[tex]\[ Z = \frac{160}{3} + \frac{3}{2} \times \frac{100}{3} = \frac{160}{3} + \frac{150}{3} = \frac{310}{3} \approx 103.33 \][/tex]
### Step 4: Optimal Solution and Determination of [tex]\( C_2 \)[/tex]
The current optimal solution is at [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] with [tex]\( Z = 103.33 \)[/tex].
When the objective function changes to:
[tex]\[ Z_{\max } = x1 + C_2 x2 \][/tex]
We need this vertex to remain optimal:
[tex]\[ Z = \left(\frac{160}{3}\right) + C_2 \left(\frac{100}{3}\right) = 103.33 \][/tex]
Therefore:
[tex]\[ \frac{160}{3} + C_2 \left(\frac{100}{3}\right) \leq 103.33 \][/tex]
To determine the exact range:
1. Rewrite the relation:
[tex]\[ \frac{160 + 100 C_2 }{3} = 103.33 \][/tex]
[tex]\[ 160 + 100 C_2 = 310 \][/tex]
[tex]\[ 100 C_2 = 150 \][/tex]
[tex]\[ C_2 = 1.5 \][/tex]
Thus, this indicates that for [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] to remain optimal, [tex]\( C_2 \leq 1.5 \)[/tex].
So, the present solution will be optimal within the range of [tex]\( C_2 \leq 1.5 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.