Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the given Linear Programming Problem (L.P.P.) and determine the range of values for [tex]\( C_2 \)[/tex] that keeps the current solution optimal, we need to follow the steps below:
### Step 1: Identify the constraints and the objective function
The given L.P.P. is:
[tex]\[ Z_{\max } = x_1 + \frac{3}{2} x_2 \][/tex]
subject to:
[tex]\[ x_1 + x_2 \leq 80 \quad \text{(1)} \][/tex]
[tex]\[ x_1 + 2 x_2 \leq 120 \quad \text{(2)} \][/tex]
[tex]\[ 2 x_1 + x_2 \leq 140 \quad \text{(3)} \][/tex]
with
[tex]\[ x_1, x_2 \geq 0. \][/tex]
### Step 2: Determine the feasible region
We need to determine the intersection points of the constraint lines. Solving pairs of linear equations will provide the vertices of the feasible region.
#### Intersection of Constraints (1) and (2):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ x_1 + 2 x_2 = 120 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (x_1 + 2 x_2) - (x_1 + x_2) = 120 - 80 \\ x_2 = 40 \\ x_1 + 40 = 80 \\ x_1 = 40 \][/tex]
So, the intersection point is [tex]\( (40, 40) \)[/tex].
#### Intersection of Constraints (1) and (3):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (2 x_1 + x_2) - (x_1 + x_2) = 140 - 80 \\ x_1 = 60 \\ 60 + x_2 = 80 \\ x_2 = 20 \][/tex]
So, the intersection point is [tex]\( (60, 20) \)[/tex].
#### Intersection of Constraints (2) and (3):
[tex]\[ \begin{cases} x_1 + 2 x_2 = 120 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Multiplying the first equation by 2:
[tex]\[ 2 x_1 + 4 x_2 = 240 \\ 2 x_1 + x_2 = 140 \][/tex]
Subtracting the second from the first:
[tex]\[ (2 x_1 + 4 x_2) - (2 x_1 + x_2) = 240 - 140 \\ 3 x_2 = 100 \\ x_2 = \frac{100}{3} \approx 33.33 \][/tex]
Substitute [tex]\( x_2 \)[/tex] into the second equation:
[tex]\[ 2 x_1 + \frac{100}{3} = 140 \\ 2 x_1 = 140 - \frac{100}{3} \\ 2 x_1 = \frac{320}{3} \\ x_1 = \frac{160}{3} \approx 53.33 \][/tex]
So, the intersection point is [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex].
### Step 3: Evaluate the Objective Function at Vertices
Calculate [tex]\( Z_{\max} \)[/tex] at the vertices:
1. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 0 + \frac{3}{2} \times 0 = 0 \][/tex]
2. At [tex]\( (40, 40) \)[/tex]:
[tex]\[ Z = 40 + \frac{3}{2} \times 40 = 40 + 60 = 100 \][/tex]
3. At [tex]\( (60, 20) \)[/tex]:
[tex]\[ Z = 60 + \frac{3}{2} \times 20 = 60 + 30 = 90 \][/tex]
4. At [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex]:
[tex]\[ Z = \frac{160}{3} + \frac{3}{2} \times \frac{100}{3} = \frac{160}{3} + \frac{150}{3} = \frac{310}{3} \approx 103.33 \][/tex]
### Step 4: Optimal Solution and Determination of [tex]\( C_2 \)[/tex]
The current optimal solution is at [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] with [tex]\( Z = 103.33 \)[/tex].
When the objective function changes to:
[tex]\[ Z_{\max } = x1 + C_2 x2 \][/tex]
We need this vertex to remain optimal:
[tex]\[ Z = \left(\frac{160}{3}\right) + C_2 \left(\frac{100}{3}\right) = 103.33 \][/tex]
Therefore:
[tex]\[ \frac{160}{3} + C_2 \left(\frac{100}{3}\right) \leq 103.33 \][/tex]
To determine the exact range:
1. Rewrite the relation:
[tex]\[ \frac{160 + 100 C_2 }{3} = 103.33 \][/tex]
[tex]\[ 160 + 100 C_2 = 310 \][/tex]
[tex]\[ 100 C_2 = 150 \][/tex]
[tex]\[ C_2 = 1.5 \][/tex]
Thus, this indicates that for [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] to remain optimal, [tex]\( C_2 \leq 1.5 \)[/tex].
So, the present solution will be optimal within the range of [tex]\( C_2 \leq 1.5 \)[/tex].
### Step 1: Identify the constraints and the objective function
The given L.P.P. is:
[tex]\[ Z_{\max } = x_1 + \frac{3}{2} x_2 \][/tex]
subject to:
[tex]\[ x_1 + x_2 \leq 80 \quad \text{(1)} \][/tex]
[tex]\[ x_1 + 2 x_2 \leq 120 \quad \text{(2)} \][/tex]
[tex]\[ 2 x_1 + x_2 \leq 140 \quad \text{(3)} \][/tex]
with
[tex]\[ x_1, x_2 \geq 0. \][/tex]
### Step 2: Determine the feasible region
We need to determine the intersection points of the constraint lines. Solving pairs of linear equations will provide the vertices of the feasible region.
#### Intersection of Constraints (1) and (2):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ x_1 + 2 x_2 = 120 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (x_1 + 2 x_2) - (x_1 + x_2) = 120 - 80 \\ x_2 = 40 \\ x_1 + 40 = 80 \\ x_1 = 40 \][/tex]
So, the intersection point is [tex]\( (40, 40) \)[/tex].
#### Intersection of Constraints (1) and (3):
[tex]\[ \begin{cases} x_1 + x_2 = 80 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Subtracting the first equation from the second:
[tex]\[ (2 x_1 + x_2) - (x_1 + x_2) = 140 - 80 \\ x_1 = 60 \\ 60 + x_2 = 80 \\ x_2 = 20 \][/tex]
So, the intersection point is [tex]\( (60, 20) \)[/tex].
#### Intersection of Constraints (2) and (3):
[tex]\[ \begin{cases} x_1 + 2 x_2 = 120 \\ 2 x_1 + x_2 = 140 \end{cases} \][/tex]
Multiplying the first equation by 2:
[tex]\[ 2 x_1 + 4 x_2 = 240 \\ 2 x_1 + x_2 = 140 \][/tex]
Subtracting the second from the first:
[tex]\[ (2 x_1 + 4 x_2) - (2 x_1 + x_2) = 240 - 140 \\ 3 x_2 = 100 \\ x_2 = \frac{100}{3} \approx 33.33 \][/tex]
Substitute [tex]\( x_2 \)[/tex] into the second equation:
[tex]\[ 2 x_1 + \frac{100}{3} = 140 \\ 2 x_1 = 140 - \frac{100}{3} \\ 2 x_1 = \frac{320}{3} \\ x_1 = \frac{160}{3} \approx 53.33 \][/tex]
So, the intersection point is [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex].
### Step 3: Evaluate the Objective Function at Vertices
Calculate [tex]\( Z_{\max} \)[/tex] at the vertices:
1. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ Z = 0 + \frac{3}{2} \times 0 = 0 \][/tex]
2. At [tex]\( (40, 40) \)[/tex]:
[tex]\[ Z = 40 + \frac{3}{2} \times 40 = 40 + 60 = 100 \][/tex]
3. At [tex]\( (60, 20) \)[/tex]:
[tex]\[ Z = 60 + \frac{3}{2} \times 20 = 60 + 30 = 90 \][/tex]
4. At [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex]:
[tex]\[ Z = \frac{160}{3} + \frac{3}{2} \times \frac{100}{3} = \frac{160}{3} + \frac{150}{3} = \frac{310}{3} \approx 103.33 \][/tex]
### Step 4: Optimal Solution and Determination of [tex]\( C_2 \)[/tex]
The current optimal solution is at [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] with [tex]\( Z = 103.33 \)[/tex].
When the objective function changes to:
[tex]\[ Z_{\max } = x1 + C_2 x2 \][/tex]
We need this vertex to remain optimal:
[tex]\[ Z = \left(\frac{160}{3}\right) + C_2 \left(\frac{100}{3}\right) = 103.33 \][/tex]
Therefore:
[tex]\[ \frac{160}{3} + C_2 \left(\frac{100}{3}\right) \leq 103.33 \][/tex]
To determine the exact range:
1. Rewrite the relation:
[tex]\[ \frac{160 + 100 C_2 }{3} = 103.33 \][/tex]
[tex]\[ 160 + 100 C_2 = 310 \][/tex]
[tex]\[ 100 C_2 = 150 \][/tex]
[tex]\[ C_2 = 1.5 \][/tex]
Thus, this indicates that for [tex]\( \left(\frac{160}{3}, \frac{100}{3}\right) \)[/tex] to remain optimal, [tex]\( C_2 \leq 1.5 \)[/tex].
So, the present solution will be optimal within the range of [tex]\( C_2 \leq 1.5 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.