Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's determine the volume of a 0.235-mol ideal gas sample at 1.10 atm and [tex]\(25^{\circ}C\)[/tex].
We will use the Ideal Gas Law for this calculation, which is given by:
[tex]\[ PV = nRT \][/tex]
where
- [tex]\(P\)[/tex] is the pressure,
- [tex]\(V\)[/tex] is the volume,
- [tex]\(n\)[/tex] is the number of moles,
- [tex]\(R\)[/tex] is the ideal gas constant,
- [tex]\(T\)[/tex] is the temperature in Kelvin.
Here are the values provided in the problem:
- [tex]\(n = 0.235 \ \text{mol}\)[/tex]
- [tex]\(P = 1.10 \ \text{atm}\)[/tex]
- [tex]\(T = 25^{\circ}C\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(^{\circ}C) + 273.15 \][/tex]
So, for [tex]\(25^{\circ}C\)[/tex]:
[tex]\[ T = 25 + 273.15 = 298.15 \ \text{K} \][/tex]
The ideal gas constant [tex]\(R\)[/tex] is:
[tex]\[ R = 0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol}) \][/tex]
Now, we can rearrange the Ideal Gas Law to solve for [tex]\(V\)[/tex] (volume):
[tex]\[ V = \frac{nRT}{P} \][/tex]
Substituting in the given values:
[tex]\[ V = \frac{(0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K})}{1.10 \ \text{atm}} \][/tex]
Calculating the numerator:
[tex]\[ (0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K}) \approx 5.752787925 \ \text{L} \cdot \text{atm} \][/tex]
Now, divide by the pressure:
[tex]\[ V = \frac{5.752787925 \ \text{L} \cdot \text{atm}}{1.10 \ \text{atm}} \approx 5.2294154772727275 \ \text{L} \][/tex]
Therefore, the volume of the gas sample is approximately [tex]\(5.229 \ \text{L} \)[/tex].
We will use the Ideal Gas Law for this calculation, which is given by:
[tex]\[ PV = nRT \][/tex]
where
- [tex]\(P\)[/tex] is the pressure,
- [tex]\(V\)[/tex] is the volume,
- [tex]\(n\)[/tex] is the number of moles,
- [tex]\(R\)[/tex] is the ideal gas constant,
- [tex]\(T\)[/tex] is the temperature in Kelvin.
Here are the values provided in the problem:
- [tex]\(n = 0.235 \ \text{mol}\)[/tex]
- [tex]\(P = 1.10 \ \text{atm}\)[/tex]
- [tex]\(T = 25^{\circ}C\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(^{\circ}C) + 273.15 \][/tex]
So, for [tex]\(25^{\circ}C\)[/tex]:
[tex]\[ T = 25 + 273.15 = 298.15 \ \text{K} \][/tex]
The ideal gas constant [tex]\(R\)[/tex] is:
[tex]\[ R = 0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol}) \][/tex]
Now, we can rearrange the Ideal Gas Law to solve for [tex]\(V\)[/tex] (volume):
[tex]\[ V = \frac{nRT}{P} \][/tex]
Substituting in the given values:
[tex]\[ V = \frac{(0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K})}{1.10 \ \text{atm}} \][/tex]
Calculating the numerator:
[tex]\[ (0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K}) \approx 5.752787925 \ \text{L} \cdot \text{atm} \][/tex]
Now, divide by the pressure:
[tex]\[ V = \frac{5.752787925 \ \text{L} \cdot \text{atm}}{1.10 \ \text{atm}} \approx 5.2294154772727275 \ \text{L} \][/tex]
Therefore, the volume of the gas sample is approximately [tex]\(5.229 \ \text{L} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.