Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the intersection of sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex], we need to identify the elements that are common to both sets.
Let's list out the elements of each set:
- Set [tex]\( C \)[/tex] consists of the elements: [tex]\( \{0, 1, 3, 10\} \)[/tex]
- Set [tex]\( D \)[/tex] consists of the elements: [tex]\( \{2, 4, 6, 8, 10\} \)[/tex]
The intersection of two sets, denoted [tex]\( C \cap D \)[/tex], includes all elements that are present in both sets.
Comparing the elements, we see that:
- The element 0 is in set [tex]\( C \)[/tex] but not in set [tex]\( D \)[/tex].
- The element 1 is in set [tex]\( C \)[/tex] but not in set [tex]\( D \)[/tex].
- The element 3 is in set [tex]\( C \)[/tex] but not in set [tex]\( D \)[/tex].
- The element 10 is in both set [tex]\( C \)[/tex] and set [tex]\( D \)[/tex].
No other elements are common to both sets.
Thus, the intersection of sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is:
[tex]\[ C \cap D = \{10\} \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{10} \][/tex]
Let's list out the elements of each set:
- Set [tex]\( C \)[/tex] consists of the elements: [tex]\( \{0, 1, 3, 10\} \)[/tex]
- Set [tex]\( D \)[/tex] consists of the elements: [tex]\( \{2, 4, 6, 8, 10\} \)[/tex]
The intersection of two sets, denoted [tex]\( C \cap D \)[/tex], includes all elements that are present in both sets.
Comparing the elements, we see that:
- The element 0 is in set [tex]\( C \)[/tex] but not in set [tex]\( D \)[/tex].
- The element 1 is in set [tex]\( C \)[/tex] but not in set [tex]\( D \)[/tex].
- The element 3 is in set [tex]\( C \)[/tex] but not in set [tex]\( D \)[/tex].
- The element 10 is in both set [tex]\( C \)[/tex] and set [tex]\( D \)[/tex].
No other elements are common to both sets.
Thus, the intersection of sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is:
[tex]\[ C \cap D = \{10\} \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{10} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.