Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find out how many coats, shirts, and slacks should be produced to use all available labor hours, we need to set up and solve a system of linear equations based on the given data. Here’s the step-by-step process to solve this problem:
1. Understand the Problem and Convert Units:
First, convert all available hours into minutes since the times for each process are given in minutes.
[tex]\[ \text{Available cutting time} = 115 \text{ hrs} \times 60 \text{ min/hr} = 6900 \text{ min} \][/tex]
[tex]\[ \text{Available sewing time} = 280 \text{ hrs} \times 60 \text{ min/hr} = 16800 \text{ min} \][/tex]
[tex]\[ \text{Available packaging time} = 65 \text{ hrs} \times 60 \text{ min/hr} = 3900 \text{ min} \][/tex]
2. Set Up the System of Equations:
Let [tex]\( x \)[/tex] be the number of coats, [tex]\( y \)[/tex] be the number of shirts, and [tex]\( z \)[/tex] be the number of slacks.
We create the following equations based on the time requirements for each process per item:
Cutting Time Equation:
[tex]\[ 20x + 15y + 10z = 6900 \][/tex]
Sewing Time Equation:
[tex]\[ 60x + 30y + 24z = 16800 \][/tex]
Packaging Time Equation:
[tex]\[ 5x + 12y + 6z = 3900 \][/tex]
3. Solve the System of Equations:
Solving this system of equations, we get:
[tex]\[ x = 120 \quad \text{(number of coats)} \][/tex]
[tex]\[ y = 200 \quad \text{(number of shirts)} \][/tex]
[tex]\[ z = 150 \quad \text{(number of slacks)} \][/tex]
4. Interpret the Results:
Therefore, to utilize all available labor hours exactly, the clothing manufacturer should produce:
[tex]\[ 120 \text{ coats} \][/tex]
[tex]\[ 200 \text{ shirts} \][/tex]
[tex]\[ 150 \text{ slacks} \][/tex]
This way, the given labor hours for cutting, sewing, and packaging will be fully used without any surplus or deficit.
1. Understand the Problem and Convert Units:
First, convert all available hours into minutes since the times for each process are given in minutes.
[tex]\[ \text{Available cutting time} = 115 \text{ hrs} \times 60 \text{ min/hr} = 6900 \text{ min} \][/tex]
[tex]\[ \text{Available sewing time} = 280 \text{ hrs} \times 60 \text{ min/hr} = 16800 \text{ min} \][/tex]
[tex]\[ \text{Available packaging time} = 65 \text{ hrs} \times 60 \text{ min/hr} = 3900 \text{ min} \][/tex]
2. Set Up the System of Equations:
Let [tex]\( x \)[/tex] be the number of coats, [tex]\( y \)[/tex] be the number of shirts, and [tex]\( z \)[/tex] be the number of slacks.
We create the following equations based on the time requirements for each process per item:
Cutting Time Equation:
[tex]\[ 20x + 15y + 10z = 6900 \][/tex]
Sewing Time Equation:
[tex]\[ 60x + 30y + 24z = 16800 \][/tex]
Packaging Time Equation:
[tex]\[ 5x + 12y + 6z = 3900 \][/tex]
3. Solve the System of Equations:
Solving this system of equations, we get:
[tex]\[ x = 120 \quad \text{(number of coats)} \][/tex]
[tex]\[ y = 200 \quad \text{(number of shirts)} \][/tex]
[tex]\[ z = 150 \quad \text{(number of slacks)} \][/tex]
4. Interpret the Results:
Therefore, to utilize all available labor hours exactly, the clothing manufacturer should produce:
[tex]\[ 120 \text{ coats} \][/tex]
[tex]\[ 200 \text{ shirts} \][/tex]
[tex]\[ 150 \text{ slacks} \][/tex]
This way, the given labor hours for cutting, sewing, and packaging will be fully used without any surplus or deficit.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.