Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's balance the redox reaction in an acidic solution step-by-step.
Given reaction:
[tex]\[ \mathrm{PbO_2} + \mathrm{I_2} \rightarrow \mathrm{Pb^{2+}} + \mathrm{IO_7^{-}} \][/tex]
### Step 1: Split into half-reactions
First, we split the reaction into oxidation and reduction half-reactions.
1. Oxidation half-reaction: [tex]\( \mathrm{I_2} \rightarrow \mathrm{IO_7^{-}} \)[/tex]
2. Reduction half-reaction: [tex]\( \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} \)[/tex]
### Step 2: Balance atoms in each half-reaction except for oxygen and hydrogen
1. Oxidation half-reaction:
[tex]\[ \mathrm{I_2} \rightarrow \mathrm{IO_7^{-}} \][/tex]
The iodine atoms are already balanced.
2. Reduction half-reaction:
[tex]\[ \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} \][/tex]
The lead atoms are already balanced.
### Step 3: Balance oxygen atoms by adding [tex]\( \mathrm{H_2O} \)[/tex]
1. Oxidation half-reaction:
[tex]\[ \mathrm{I_2} \rightarrow \mathrm{IO_7^{-}} \][/tex]
On the right side, there are 7 oxygen atoms, so we add 7 [tex]\( \mathrm{H_2O} \)[/tex] on the left side:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} \][/tex]
2. Reduction half-reaction:
[tex]\[ \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} \][/tex]
On the left side, there are 2 oxygen atoms, so we add 2 [tex]\( \mathrm{H_2O} \)[/tex] on the right side:
[tex]\[ \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
### Step 4: Balance hydrogen atoms by adding [tex]\( \mathrm{H^+} \)[/tex]
1. Oxidation half-reaction:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} \][/tex]
There are 14 hydrogen atoms on the left side, so we add 14 [tex]\( \mathrm{H^+} \)[/tex] on the right side:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} + 14\mathrm{H^+} \][/tex]
2. Reduction half-reaction:
[tex]\[ \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
There are 4 hydrogen atoms on the right side, so we add 4 [tex]\( \mathrm{H^+} \)[/tex] on the left side:
[tex]\[ \mathrm{PbO_2} + 4\mathrm{H^+} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
### Step 5: Balance charges by adding electrons ([tex]\( \mathrm{e^-} \)[/tex])
1. Oxidation half-reaction:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} + 14\mathrm{H^+} \][/tex]
The left side has no charge, and the right side has a total charge of [tex]\( -1 + 14 = 13 \)[/tex]. Therefore, we need 13 electrons on the right side to balance the charges:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} + 14\mathrm{H^+} + 13\mathrm{e^-} \][/tex]
2. Reduction half-reaction:
[tex]\[ \mathrm{PbO_2} + 4\mathrm{H^+} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
The left side has a charge of [tex]\( 4\mathrm{H^+} = 4 \)[/tex] and the right side has a charge of [tex]\( 2 \)[/tex]. Therefore, we need 2 electrons on the left side to balance the charges:
[tex]\[ \mathrm{PbO_2} + 4\mathrm{H^+} + 2\mathrm{e^-} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
### Step 6: Combine the half-reactions
Make sure the electron loss and gain are balanced. Multiply the half-reactions by appropriate coefficients so that the number of electrons lost in oxidation equals the number gained in reduction:
[tex]\[ 2 \times \left( \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} + 14\mathrm{H^+} + 13\mathrm{e^-} \right) \][/tex]
[tex]\[ 13 \times \left( \mathrm{PbO_2} + 4\mathrm{H^+} + 2\mathrm{e^-} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \right) \][/tex]
This results in:
[tex]\[ 2\mathrm{I_2} + 14\mathrm{H_2O} \rightarrow 2\mathrm{IO_7^{-}} + 28\mathrm{H^+} + 26\mathrm{e^-} \][/tex]
[tex]\[ 13\mathrm{PbO_2} + 52\mathrm{H^+} + 26\mathrm{e^-} \rightarrow 13\mathrm{Pb^{2+}} + 26\mathrm{H_2O} \][/tex]
Summing these gives:
[tex]\[ 2\mathrm{I_2} + 13\mathrm{PbO_2} + 14\mathrm{H_2O} + 52\mathrm{H^+} + 26\mathrm{e^-} \rightarrow 2\mathrm{IO_7^{-}} + 28\mathrm{H^+} + 26\mathrm{e^-} + 13\mathrm{Pb^{2+}} + 26\mathrm{H_2O} \][/tex]
### Step 7: Simplify the equation by canceling out common terms:
Cancel out the electrons ([tex]\( \mathrm{e^-} \)[/tex]), reduce the number of [tex]\( H_2O \)[/tex] and [tex]\( H^+ \)[/tex]:
[tex]\[ 2\mathrm{I_2} + 13\mathrm{PbO_2} + 26\mathrm{H^+} \rightarrow 2\mathrm{IO_7^{-}} + 13\mathrm{Pb^{2+}} + 12\mathrm{H_2O} \][/tex]
Thus, the balanced equation in acidic solution is:
[tex]\[ 2\mathrm{I_2} + 13\mathrm{PbO_2} + 26\mathrm{H^+} \rightarrow 2\mathrm{IO_7^{-}} + 13\mathrm{Pb^{2+}} + 12\mathrm{H_2O} \][/tex]
Given reaction:
[tex]\[ \mathrm{PbO_2} + \mathrm{I_2} \rightarrow \mathrm{Pb^{2+}} + \mathrm{IO_7^{-}} \][/tex]
### Step 1: Split into half-reactions
First, we split the reaction into oxidation and reduction half-reactions.
1. Oxidation half-reaction: [tex]\( \mathrm{I_2} \rightarrow \mathrm{IO_7^{-}} \)[/tex]
2. Reduction half-reaction: [tex]\( \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} \)[/tex]
### Step 2: Balance atoms in each half-reaction except for oxygen and hydrogen
1. Oxidation half-reaction:
[tex]\[ \mathrm{I_2} \rightarrow \mathrm{IO_7^{-}} \][/tex]
The iodine atoms are already balanced.
2. Reduction half-reaction:
[tex]\[ \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} \][/tex]
The lead atoms are already balanced.
### Step 3: Balance oxygen atoms by adding [tex]\( \mathrm{H_2O} \)[/tex]
1. Oxidation half-reaction:
[tex]\[ \mathrm{I_2} \rightarrow \mathrm{IO_7^{-}} \][/tex]
On the right side, there are 7 oxygen atoms, so we add 7 [tex]\( \mathrm{H_2O} \)[/tex] on the left side:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} \][/tex]
2. Reduction half-reaction:
[tex]\[ \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} \][/tex]
On the left side, there are 2 oxygen atoms, so we add 2 [tex]\( \mathrm{H_2O} \)[/tex] on the right side:
[tex]\[ \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
### Step 4: Balance hydrogen atoms by adding [tex]\( \mathrm{H^+} \)[/tex]
1. Oxidation half-reaction:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} \][/tex]
There are 14 hydrogen atoms on the left side, so we add 14 [tex]\( \mathrm{H^+} \)[/tex] on the right side:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} + 14\mathrm{H^+} \][/tex]
2. Reduction half-reaction:
[tex]\[ \mathrm{PbO_2} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
There are 4 hydrogen atoms on the right side, so we add 4 [tex]\( \mathrm{H^+} \)[/tex] on the left side:
[tex]\[ \mathrm{PbO_2} + 4\mathrm{H^+} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
### Step 5: Balance charges by adding electrons ([tex]\( \mathrm{e^-} \)[/tex])
1. Oxidation half-reaction:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} + 14\mathrm{H^+} \][/tex]
The left side has no charge, and the right side has a total charge of [tex]\( -1 + 14 = 13 \)[/tex]. Therefore, we need 13 electrons on the right side to balance the charges:
[tex]\[ \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} + 14\mathrm{H^+} + 13\mathrm{e^-} \][/tex]
2. Reduction half-reaction:
[tex]\[ \mathrm{PbO_2} + 4\mathrm{H^+} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
The left side has a charge of [tex]\( 4\mathrm{H^+} = 4 \)[/tex] and the right side has a charge of [tex]\( 2 \)[/tex]. Therefore, we need 2 electrons on the left side to balance the charges:
[tex]\[ \mathrm{PbO_2} + 4\mathrm{H^+} + 2\mathrm{e^-} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \][/tex]
### Step 6: Combine the half-reactions
Make sure the electron loss and gain are balanced. Multiply the half-reactions by appropriate coefficients so that the number of electrons lost in oxidation equals the number gained in reduction:
[tex]\[ 2 \times \left( \mathrm{I_2} + 7\mathrm{H_2O} \rightarrow \mathrm{IO_7^{-}} + 14\mathrm{H^+} + 13\mathrm{e^-} \right) \][/tex]
[tex]\[ 13 \times \left( \mathrm{PbO_2} + 4\mathrm{H^+} + 2\mathrm{e^-} \rightarrow \mathrm{Pb^{2+}} + 2\mathrm{H_2O} \right) \][/tex]
This results in:
[tex]\[ 2\mathrm{I_2} + 14\mathrm{H_2O} \rightarrow 2\mathrm{IO_7^{-}} + 28\mathrm{H^+} + 26\mathrm{e^-} \][/tex]
[tex]\[ 13\mathrm{PbO_2} + 52\mathrm{H^+} + 26\mathrm{e^-} \rightarrow 13\mathrm{Pb^{2+}} + 26\mathrm{H_2O} \][/tex]
Summing these gives:
[tex]\[ 2\mathrm{I_2} + 13\mathrm{PbO_2} + 14\mathrm{H_2O} + 52\mathrm{H^+} + 26\mathrm{e^-} \rightarrow 2\mathrm{IO_7^{-}} + 28\mathrm{H^+} + 26\mathrm{e^-} + 13\mathrm{Pb^{2+}} + 26\mathrm{H_2O} \][/tex]
### Step 7: Simplify the equation by canceling out common terms:
Cancel out the electrons ([tex]\( \mathrm{e^-} \)[/tex]), reduce the number of [tex]\( H_2O \)[/tex] and [tex]\( H^+ \)[/tex]:
[tex]\[ 2\mathrm{I_2} + 13\mathrm{PbO_2} + 26\mathrm{H^+} \rightarrow 2\mathrm{IO_7^{-}} + 13\mathrm{Pb^{2+}} + 12\mathrm{H_2O} \][/tex]
Thus, the balanced equation in acidic solution is:
[tex]\[ 2\mathrm{I_2} + 13\mathrm{PbO_2} + 26\mathrm{H^+} \rightarrow 2\mathrm{IO_7^{-}} + 13\mathrm{Pb^{2+}} + 12\mathrm{H_2O} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.