Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The given expression appears to involve polynomial long division but is formatted incorrectly. Here is the corrected and properly formatted question:

Perform the long division:

[tex]\[ \frac{x^3 + 4x^2 - x + 8}{x^2 - 2x + 1} \][/tex]


Sagot :

Sure, let's solve the polynomial division of [tex]\((x^2 - 2x + 1)\)[/tex] into [tex]\((x^3 + 4x^2 - 5 + 8)\)[/tex].

First, rewrite the dividend and divisor clearly:
- Dividend (numerator): [tex]\(x^3 + 4x^2 + 3\)[/tex] (since [tex]\(-5 + 8 = 3\)[/tex])
- Divisor (denominator): [tex]\(x^2 - 2x + 1\)[/tex]

We perform polynomial long division step-by-step:

1. Divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{x^3}{x^2} = x \][/tex]
So, the first term of the quotient is [tex]\(x\)[/tex].

2. Multiply the entire divisor by this term and subtract from the dividend:
[tex]\[ (x^2 - 2x + 1) \times x = x^3 - 2x^2 + x \][/tex]
Subtract this from the original dividend:
[tex]\[ (x^3 + 4x^2 + 3) - (x^3 - 2x^2 + x) = 6x^2 - x + 3 \][/tex]
Now, the new polynomial to divide is [tex]\(6x^2 - x + 3\)[/tex].

3. Divide the new leading term of the new polynomial by the leading term of the divisor:
[tex]\[ \frac{6x^2}{x^2} = 6 \][/tex]
So, the next term of the quotient is [tex]\(6\)[/tex].

4. Multiply the entire divisor by this term and subtract from the new polynomial:
[tex]\[ (x^2 - 2x + 1) \times 6 = 6x^2 - 12x + 6 \][/tex]
Subtract this from the new polynomial:
[tex]\[ (6x^2 - x + 3) - (6x^2 - 12x + 6) = 11x - 3 \][/tex]
Now, the new polynomial to divide is [tex]\(11x - 3\)[/tex].

Since the degree of [tex]\(11x - 3\)[/tex] is less than the degree of the divisor [tex]\((x^2 - 2x + 1)\)[/tex], we stop here and consider [tex]\(11x - 3\)[/tex] the remainder.

Thus, the quotient is [tex]\(x + 6\)[/tex] and the remainder is [tex]\(11x - 3\)[/tex].

Therefore, the result of [tex]\((x^2 - 2x + 1) \div (x^3 + 4x^2 - 5 + 8)\)[/tex] is:
[tex]\[ \text{Quotient: } x + 6 \][/tex]
[tex]\[ \text{Remainder: } 11x - 3 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.