Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Find the degree measure of an angle of [tex]-\frac{2 \pi}{5}[/tex] radians.

Sagot :

To convert an angle from radians to degrees, we can use the conversion factor that [tex]\( 180^\circ \)[/tex] is equivalent to [tex]\( \pi \)[/tex] radians. The formula to convert radians to degrees is:

[tex]\[ \text{Degrees} = \text{Radians} \times \left( \frac{180^\circ}{\pi} \right) \][/tex]

We are given an angle of [tex]\( -\frac{2\pi}{5} \)[/tex] radians and need to convert it to degrees. Applying the conversion formula:

[tex]\[ \text{Degrees} = -\frac{2\pi}{5} \times \left( \frac{180^\circ}{\pi} \right) \][/tex]

First, we notice that the [tex]\(\pi\)[/tex] in the numerator and denominator will cancel out:

[tex]\[ \text{Degrees} = -\frac{2 \times 180^\circ}{5} \][/tex]

Next, we multiply the values in the numerator:

[tex]\[ \text{Degrees} = -\frac{360^\circ}{5} \][/tex]

Finally, we perform the division:

[tex]\[ \text{Degrees} = -72^\circ \][/tex]

Therefore, the degree measure of an angle of [tex]\( -\frac{2\pi}{5} \)[/tex] radians is [tex]\( -72^\circ \)[/tex].