Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the binomial factors of the quadratic polynomial [tex]\(6s^2 + 40s - 64\)[/tex], we need to factor it step-by-step. Here is the solution:
### Step 1: Write down the polynomial
[tex]\[ 6s^2 + 40s - 64 \][/tex]
### Step 2: Identify coefficients
From the quadratic polynomial [tex]\(ax^2 + bx + c\)[/tex]:
- [tex]\(a = 6\)[/tex]
- [tex]\(b = 40\)[/tex]
- [tex]\(c = -64\)[/tex]
### Step 3: Factor the polynomial using the quadratic formula
The quadratic formula is:
[tex]\[ s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in the values:
[tex]\[ s = \frac{-40 \pm \sqrt{40^2 - 4 \cdot 6 \cdot (-64)}}{2 \cdot 6} \][/tex]
[tex]\[ s = \frac{-40 \pm \sqrt{1600 + 1536}}{12} \][/tex]
[tex]\[ s = \frac{-40 \pm \sqrt{3136}}{12} \][/tex]
[tex]\[ s = \frac{-40 \pm 56}{12} \][/tex]
This gives us two solutions:
[tex]\[ s = \frac{-40 + 56}{12} = \frac{16}{12} = \frac{4}{3} \][/tex]
[tex]\[ s = \frac{-40 - 56}{12} = \frac{-96}{12} = -8 \][/tex]
### Step 4: Write the factors
The factors corresponding to these solutions are:
[tex]\[ s - \frac{4}{3} \][/tex]
[tex]\[ s + 8 \][/tex]
Since it's generally preferred to have integer coefficients, we can write the factored form as:
[tex]\[ 3( s - \frac{4}{3} ) = 3s - 4 \][/tex]
[tex]\[ s + 8 \][/tex]
Thus, our quadratic polynomial [tex]\(6s^2 + 40s - 64\)[/tex] can be factored as:
[tex]\[ (3s - 4)(2s + 16) \][/tex]
### Step 5: Simplification
We must verify that this is correct and comparable to our answer choices:
[tex]\[ 3s - 4 \text{ and } 2s + 16 \][/tex]
One of these factors fits within the answer choices:
- [tex]\(3s - 4\)[/tex] matches option D.
### Conclusion
The correct binomial factor from the given choices is [tex]\(3s - 4\)[/tex].
So, the answer is:
D. [tex]\(3s - 4\)[/tex]
### Step 1: Write down the polynomial
[tex]\[ 6s^2 + 40s - 64 \][/tex]
### Step 2: Identify coefficients
From the quadratic polynomial [tex]\(ax^2 + bx + c\)[/tex]:
- [tex]\(a = 6\)[/tex]
- [tex]\(b = 40\)[/tex]
- [tex]\(c = -64\)[/tex]
### Step 3: Factor the polynomial using the quadratic formula
The quadratic formula is:
[tex]\[ s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in the values:
[tex]\[ s = \frac{-40 \pm \sqrt{40^2 - 4 \cdot 6 \cdot (-64)}}{2 \cdot 6} \][/tex]
[tex]\[ s = \frac{-40 \pm \sqrt{1600 + 1536}}{12} \][/tex]
[tex]\[ s = \frac{-40 \pm \sqrt{3136}}{12} \][/tex]
[tex]\[ s = \frac{-40 \pm 56}{12} \][/tex]
This gives us two solutions:
[tex]\[ s = \frac{-40 + 56}{12} = \frac{16}{12} = \frac{4}{3} \][/tex]
[tex]\[ s = \frac{-40 - 56}{12} = \frac{-96}{12} = -8 \][/tex]
### Step 4: Write the factors
The factors corresponding to these solutions are:
[tex]\[ s - \frac{4}{3} \][/tex]
[tex]\[ s + 8 \][/tex]
Since it's generally preferred to have integer coefficients, we can write the factored form as:
[tex]\[ 3( s - \frac{4}{3} ) = 3s - 4 \][/tex]
[tex]\[ s + 8 \][/tex]
Thus, our quadratic polynomial [tex]\(6s^2 + 40s - 64\)[/tex] can be factored as:
[tex]\[ (3s - 4)(2s + 16) \][/tex]
### Step 5: Simplification
We must verify that this is correct and comparable to our answer choices:
[tex]\[ 3s - 4 \text{ and } 2s + 16 \][/tex]
One of these factors fits within the answer choices:
- [tex]\(3s - 4\)[/tex] matches option D.
### Conclusion
The correct binomial factor from the given choices is [tex]\(3s - 4\)[/tex].
So, the answer is:
D. [tex]\(3s - 4\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.