Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the binomial factors of the quadratic polynomial [tex]\(6s^2 + 40s - 64\)[/tex], we need to factor it step-by-step. Here is the solution:
### Step 1: Write down the polynomial
[tex]\[ 6s^2 + 40s - 64 \][/tex]
### Step 2: Identify coefficients
From the quadratic polynomial [tex]\(ax^2 + bx + c\)[/tex]:
- [tex]\(a = 6\)[/tex]
- [tex]\(b = 40\)[/tex]
- [tex]\(c = -64\)[/tex]
### Step 3: Factor the polynomial using the quadratic formula
The quadratic formula is:
[tex]\[ s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in the values:
[tex]\[ s = \frac{-40 \pm \sqrt{40^2 - 4 \cdot 6 \cdot (-64)}}{2 \cdot 6} \][/tex]
[tex]\[ s = \frac{-40 \pm \sqrt{1600 + 1536}}{12} \][/tex]
[tex]\[ s = \frac{-40 \pm \sqrt{3136}}{12} \][/tex]
[tex]\[ s = \frac{-40 \pm 56}{12} \][/tex]
This gives us two solutions:
[tex]\[ s = \frac{-40 + 56}{12} = \frac{16}{12} = \frac{4}{3} \][/tex]
[tex]\[ s = \frac{-40 - 56}{12} = \frac{-96}{12} = -8 \][/tex]
### Step 4: Write the factors
The factors corresponding to these solutions are:
[tex]\[ s - \frac{4}{3} \][/tex]
[tex]\[ s + 8 \][/tex]
Since it's generally preferred to have integer coefficients, we can write the factored form as:
[tex]\[ 3( s - \frac{4}{3} ) = 3s - 4 \][/tex]
[tex]\[ s + 8 \][/tex]
Thus, our quadratic polynomial [tex]\(6s^2 + 40s - 64\)[/tex] can be factored as:
[tex]\[ (3s - 4)(2s + 16) \][/tex]
### Step 5: Simplification
We must verify that this is correct and comparable to our answer choices:
[tex]\[ 3s - 4 \text{ and } 2s + 16 \][/tex]
One of these factors fits within the answer choices:
- [tex]\(3s - 4\)[/tex] matches option D.
### Conclusion
The correct binomial factor from the given choices is [tex]\(3s - 4\)[/tex].
So, the answer is:
D. [tex]\(3s - 4\)[/tex]
### Step 1: Write down the polynomial
[tex]\[ 6s^2 + 40s - 64 \][/tex]
### Step 2: Identify coefficients
From the quadratic polynomial [tex]\(ax^2 + bx + c\)[/tex]:
- [tex]\(a = 6\)[/tex]
- [tex]\(b = 40\)[/tex]
- [tex]\(c = -64\)[/tex]
### Step 3: Factor the polynomial using the quadratic formula
The quadratic formula is:
[tex]\[ s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in the values:
[tex]\[ s = \frac{-40 \pm \sqrt{40^2 - 4 \cdot 6 \cdot (-64)}}{2 \cdot 6} \][/tex]
[tex]\[ s = \frac{-40 \pm \sqrt{1600 + 1536}}{12} \][/tex]
[tex]\[ s = \frac{-40 \pm \sqrt{3136}}{12} \][/tex]
[tex]\[ s = \frac{-40 \pm 56}{12} \][/tex]
This gives us two solutions:
[tex]\[ s = \frac{-40 + 56}{12} = \frac{16}{12} = \frac{4}{3} \][/tex]
[tex]\[ s = \frac{-40 - 56}{12} = \frac{-96}{12} = -8 \][/tex]
### Step 4: Write the factors
The factors corresponding to these solutions are:
[tex]\[ s - \frac{4}{3} \][/tex]
[tex]\[ s + 8 \][/tex]
Since it's generally preferred to have integer coefficients, we can write the factored form as:
[tex]\[ 3( s - \frac{4}{3} ) = 3s - 4 \][/tex]
[tex]\[ s + 8 \][/tex]
Thus, our quadratic polynomial [tex]\(6s^2 + 40s - 64\)[/tex] can be factored as:
[tex]\[ (3s - 4)(2s + 16) \][/tex]
### Step 5: Simplification
We must verify that this is correct and comparable to our answer choices:
[tex]\[ 3s - 4 \text{ and } 2s + 16 \][/tex]
One of these factors fits within the answer choices:
- [tex]\(3s - 4\)[/tex] matches option D.
### Conclusion
The correct binomial factor from the given choices is [tex]\(3s - 4\)[/tex].
So, the answer is:
D. [tex]\(3s - 4\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.