Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the number of real number solutions for the quadratic equation [tex]\(-4j^2 + 3j - 28 = 0\)[/tex], we can use the discriminant of the quadratic formula.
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. Here, the coefficients are:
- [tex]\(a = -4\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = -28\)[/tex]
The discriminant ([tex]\(\Delta\)[/tex]) is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ \Delta = (3)^2 - 4(-4)(-28) \][/tex]
[tex]\[ \Delta = 9 - 4 \cdot (-4) \cdot (-28) \][/tex]
[tex]\[ \Delta = 9 - 4 \cdot 4 \cdot 28 \][/tex]
[tex]\[ \Delta = 9 - 449 \][/tex]
[tex]\[ \Delta = -439 \][/tex]
Now, we examine the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are 2 real solutions.
- If [tex]\(\Delta = 0\)[/tex], there is 1 real solution.
- If [tex]\(\Delta < 0\)[/tex], there are no real solutions.
Since [tex]\(\Delta = -439\)[/tex], which is less than 0, there are no real number solutions.
The best answer for the question is:
A. 0
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. Here, the coefficients are:
- [tex]\(a = -4\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = -28\)[/tex]
The discriminant ([tex]\(\Delta\)[/tex]) is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ \Delta = (3)^2 - 4(-4)(-28) \][/tex]
[tex]\[ \Delta = 9 - 4 \cdot (-4) \cdot (-28) \][/tex]
[tex]\[ \Delta = 9 - 4 \cdot 4 \cdot 28 \][/tex]
[tex]\[ \Delta = 9 - 449 \][/tex]
[tex]\[ \Delta = -439 \][/tex]
Now, we examine the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are 2 real solutions.
- If [tex]\(\Delta = 0\)[/tex], there is 1 real solution.
- If [tex]\(\Delta < 0\)[/tex], there are no real solutions.
Since [tex]\(\Delta = -439\)[/tex], which is less than 0, there are no real number solutions.
The best answer for the question is:
A. 0
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.