Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's go through the factorization process for the expression [tex]\( t^4 - 81 \)[/tex].
### Step-by-Step Solution:
1. Identify the Given Polynomial:
The expression we need to factorize is [tex]\( t^4 - 81 \)[/tex].
2. Recognize the Form:
Notice that [tex]\( t^4 - 81 \)[/tex] can be seen as a difference of squares. Recall that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].
3. Apply the Difference of Squares Formula:
We can rewrite [tex]\( t^4 - 81 \)[/tex] as [tex]\( (t^2)^2 - 9^2 \)[/tex]. This is in the form of [tex]\( a^2 - b^2 \)[/tex], where [tex]\( a = t^2 \)[/tex] and [tex]\( b = 9 \)[/tex].
Hence,
[tex]\[ (t^2)^2 - 9^2 = (t^2 - 9)(t^2 + 9) \][/tex]
4. Further Factorize:
Notice that [tex]\( t^2 - 9 \)[/tex] is itself a difference of squares:
[tex]\[ t^2 - 9 = (t - 3)(t + 3) \][/tex]
So, we can continue factorizing:
[tex]\[ t^4 - 81 = (t^2 - 9)(t^2 + 9) = (t - 3)(t + 3)(t^2 + 9) \][/tex]
5. Identify the Correct Option:
Comparing the fully factorized form [tex]\( (t - 3)(t + 3)(t^2 + 9) \)[/tex] to the given options:
- Option A: [tex]\((t-3)(t+3)^2\)[/tex]
- Option B: [tex]\((t-3)(t+3)\left(t^2+9\right)\)[/tex]
- Option C: [tex]\(\left(r^2-9\right)\left(x^2-9\right)\)[/tex]
- Option D: [tex]\((t-3)^2(t+3)^2\)[/tex]
The correct factorization [tex]\( (t - 3)(t + 3)(t^2 + 9) \)[/tex] matches Option B.
Therefore, the correct answer is:
B. [tex]\((t-3)(t+3)\left(t^2+9\right)\)[/tex]
### Step-by-Step Solution:
1. Identify the Given Polynomial:
The expression we need to factorize is [tex]\( t^4 - 81 \)[/tex].
2. Recognize the Form:
Notice that [tex]\( t^4 - 81 \)[/tex] can be seen as a difference of squares. Recall that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].
3. Apply the Difference of Squares Formula:
We can rewrite [tex]\( t^4 - 81 \)[/tex] as [tex]\( (t^2)^2 - 9^2 \)[/tex]. This is in the form of [tex]\( a^2 - b^2 \)[/tex], where [tex]\( a = t^2 \)[/tex] and [tex]\( b = 9 \)[/tex].
Hence,
[tex]\[ (t^2)^2 - 9^2 = (t^2 - 9)(t^2 + 9) \][/tex]
4. Further Factorize:
Notice that [tex]\( t^2 - 9 \)[/tex] is itself a difference of squares:
[tex]\[ t^2 - 9 = (t - 3)(t + 3) \][/tex]
So, we can continue factorizing:
[tex]\[ t^4 - 81 = (t^2 - 9)(t^2 + 9) = (t - 3)(t + 3)(t^2 + 9) \][/tex]
5. Identify the Correct Option:
Comparing the fully factorized form [tex]\( (t - 3)(t + 3)(t^2 + 9) \)[/tex] to the given options:
- Option A: [tex]\((t-3)(t+3)^2\)[/tex]
- Option B: [tex]\((t-3)(t+3)\left(t^2+9\right)\)[/tex]
- Option C: [tex]\(\left(r^2-9\right)\left(x^2-9\right)\)[/tex]
- Option D: [tex]\((t-3)^2(t+3)^2\)[/tex]
The correct factorization [tex]\( (t - 3)(t + 3)(t^2 + 9) \)[/tex] matches Option B.
Therefore, the correct answer is:
B. [tex]\((t-3)(t+3)\left(t^2+9\right)\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.