At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze the function [tex]\( f(x) = \tan(Bx) \)[/tex] and describe how the transformations occur as the value of [tex]\( B \)[/tex] changes.
1. Period of the Function:
The period of the tangent function [tex]\( \tan(Bx) \)[/tex] is given by [tex]\( \frac{\pi}{|B|} \)[/tex]. As [tex]\( B \)[/tex] increases, the denominator becomes larger, resulting in a smaller period. Therefore, as the value of [tex]\( B \)[/tex] increases, the period of the function decreases.
2. Frequency of the Function:
The frequency of the function is the reciprocal of the period. Hence, the frequency is given by [tex]\( \frac{|B|}{\pi} \)[/tex]. As [tex]\( B \)[/tex] increases, the frequency becomes larger. Thus, as the value of [tex]\( B \)[/tex] increases, the frequency of the function increases.
3. When [tex]\( B \)[/tex] is Negative:
When [tex]\( B \)[/tex] is negative, the function [tex]\( \tan(Bx) \)[/tex] experiences a reflection over the y-axis because replacing [tex]\( x \)[/tex] with [tex]\( -x \)[/tex] in the function [tex]\( \tan(x) \)[/tex] results in [tex]\( \tan(-x) = -\tan(x) \)[/tex]. Therefore, when the value of [tex]\( B \)[/tex] is negative, the graph of the function is a reflection over the y-axis.
Putting it all together, the completed statement is:
As the value of [tex]\( B \)[/tex] increases, the period of the function decreases and the frequency of the function increases. When the value of [tex]\( B \)[/tex] is negative, the graph of the function is a reflection over the y-axis.
1. Period of the Function:
The period of the tangent function [tex]\( \tan(Bx) \)[/tex] is given by [tex]\( \frac{\pi}{|B|} \)[/tex]. As [tex]\( B \)[/tex] increases, the denominator becomes larger, resulting in a smaller period. Therefore, as the value of [tex]\( B \)[/tex] increases, the period of the function decreases.
2. Frequency of the Function:
The frequency of the function is the reciprocal of the period. Hence, the frequency is given by [tex]\( \frac{|B|}{\pi} \)[/tex]. As [tex]\( B \)[/tex] increases, the frequency becomes larger. Thus, as the value of [tex]\( B \)[/tex] increases, the frequency of the function increases.
3. When [tex]\( B \)[/tex] is Negative:
When [tex]\( B \)[/tex] is negative, the function [tex]\( \tan(Bx) \)[/tex] experiences a reflection over the y-axis because replacing [tex]\( x \)[/tex] with [tex]\( -x \)[/tex] in the function [tex]\( \tan(x) \)[/tex] results in [tex]\( \tan(-x) = -\tan(x) \)[/tex]. Therefore, when the value of [tex]\( B \)[/tex] is negative, the graph of the function is a reflection over the y-axis.
Putting it all together, the completed statement is:
As the value of [tex]\( B \)[/tex] increases, the period of the function decreases and the frequency of the function increases. When the value of [tex]\( B \)[/tex] is negative, the graph of the function is a reflection over the y-axis.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.