Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the quadratic equation [tex]\(4 - 4y - y^2 = 0\)[/tex] for [tex]\(y\)[/tex], follow these steps:
1. Identify the standard form of the quadratic equation:
The given quadratic equation is [tex]\(4 - 4y - y^2 = 0\)[/tex]. We can rewrite it as [tex]\(-y^2 - 4y + 4 = 0\)[/tex].
2. Rearrange the equation:
For convenience, we can multiply the entire equation by [tex]\(-1\)[/tex] to make it more standard:
[tex]\[ y^2 + 4y - 4 = 0. \][/tex]
3. Solve the quadratic equation using the quadratic formula:
The quadratic formula is:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \][/tex]
For our equation [tex]\(y^2 + 4y - 4 = 0\)[/tex], the coefficients are:
[tex]\(a = 1\)[/tex], [tex]\(b = 4\)[/tex], and [tex]\(c = -4\)[/tex].
4. Calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 4^2 - 4 \cdot 1 \cdot (-4) = 16 + 16 = 32. \][/tex]
5. Substitute the values into the quadratic formula:
[tex]\[ y = \frac{-4 \pm \sqrt{32}}{2 \cdot 1} = \frac{-4 \pm 4\sqrt{2}}{2}. \][/tex]
6. Simplify the solutions:
[tex]\[ y = \frac{-4 + 4\sqrt{2}}{2} = -2 + 2\sqrt{2}, \][/tex]
[tex]\[ y = \frac{-4 - 4\sqrt{2}}{2} = -2 - 2\sqrt{2}. \][/tex]
Thus, the possible values of [tex]\(y\)[/tex] are:
[tex]\[ y = -2 + 2\sqrt{2}, \quad y = -2 - 2\sqrt{2}. \][/tex]
Therefore, the correct answer is:
A. [tex]\(y = -2 + 2\sqrt{2}, y = -2 - 2\sqrt{2}\)[/tex].
1. Identify the standard form of the quadratic equation:
The given quadratic equation is [tex]\(4 - 4y - y^2 = 0\)[/tex]. We can rewrite it as [tex]\(-y^2 - 4y + 4 = 0\)[/tex].
2. Rearrange the equation:
For convenience, we can multiply the entire equation by [tex]\(-1\)[/tex] to make it more standard:
[tex]\[ y^2 + 4y - 4 = 0. \][/tex]
3. Solve the quadratic equation using the quadratic formula:
The quadratic formula is:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \][/tex]
For our equation [tex]\(y^2 + 4y - 4 = 0\)[/tex], the coefficients are:
[tex]\(a = 1\)[/tex], [tex]\(b = 4\)[/tex], and [tex]\(c = -4\)[/tex].
4. Calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 4^2 - 4 \cdot 1 \cdot (-4) = 16 + 16 = 32. \][/tex]
5. Substitute the values into the quadratic formula:
[tex]\[ y = \frac{-4 \pm \sqrt{32}}{2 \cdot 1} = \frac{-4 \pm 4\sqrt{2}}{2}. \][/tex]
6. Simplify the solutions:
[tex]\[ y = \frac{-4 + 4\sqrt{2}}{2} = -2 + 2\sqrt{2}, \][/tex]
[tex]\[ y = \frac{-4 - 4\sqrt{2}}{2} = -2 - 2\sqrt{2}. \][/tex]
Thus, the possible values of [tex]\(y\)[/tex] are:
[tex]\[ y = -2 + 2\sqrt{2}, \quad y = -2 - 2\sqrt{2}. \][/tex]
Therefore, the correct answer is:
A. [tex]\(y = -2 + 2\sqrt{2}, y = -2 - 2\sqrt{2}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.