Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's find the limit of the function [tex]\(\frac{3m^2 - 3}{m - 1}\)[/tex] as [tex]\( m \)[/tex] approaches 1.
1. Identify the function and the limit to be evaluated:
We need to evaluate:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} \][/tex]
2. Assess direct substitution:
Start by substituting [tex]\( m = 1 \)[/tex] directly into the function:
[tex]\[ \frac{3(1)^2 - 3}{1 - 1} = \frac{3 - 3}{0} = \frac{0}{0} \][/tex]
The result is an indeterminate form, [tex]\( \frac{0}{0} \)[/tex]. Therefore, we need to use algebraic manipulation to simplify the expression.
3. Factor the numerator, if possible:
Factor the numerator [tex]\( 3m^2 - 3 \)[/tex]:
[tex]\[ 3m^2 - 3 = 3(m^2 - 1) \][/tex]
Notice that [tex]\( m^2 - 1 \)[/tex] can be factored further as a difference of squares:
[tex]\[ m^2 - 1 = (m - 1)(m + 1) \][/tex]
Therefore:
[tex]\[ 3m^2 - 3 = 3(m - 1)(m + 1) \][/tex]
4. Simplify the overall expression:
Substitute the factored form back into the original function:
[tex]\[ \frac{3(m - 1)(m + 1)}{m - 1} \][/tex]
Now, if [tex]\( m \neq 1 \)[/tex], we can cancel the common factor of [tex]\( m - 1 \)[/tex]:
[tex]\[ \frac{3 \cancel{(m - 1)} (m + 1)}{\cancel{m - 1}} = 3(m + 1) \][/tex]
5. Evaluate the limit of the simplified expression as [tex]\( m \to 1 \)[/tex]:
Now, as [tex]\( m \)[/tex] approaches 1:
[tex]\[ \lim_{m \to 1} 3(m + 1) = 3(1 + 1) = 3 \cdot 2 = 6 \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} = 6 \][/tex]
So, the result is 6.
1. Identify the function and the limit to be evaluated:
We need to evaluate:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} \][/tex]
2. Assess direct substitution:
Start by substituting [tex]\( m = 1 \)[/tex] directly into the function:
[tex]\[ \frac{3(1)^2 - 3}{1 - 1} = \frac{3 - 3}{0} = \frac{0}{0} \][/tex]
The result is an indeterminate form, [tex]\( \frac{0}{0} \)[/tex]. Therefore, we need to use algebraic manipulation to simplify the expression.
3. Factor the numerator, if possible:
Factor the numerator [tex]\( 3m^2 - 3 \)[/tex]:
[tex]\[ 3m^2 - 3 = 3(m^2 - 1) \][/tex]
Notice that [tex]\( m^2 - 1 \)[/tex] can be factored further as a difference of squares:
[tex]\[ m^2 - 1 = (m - 1)(m + 1) \][/tex]
Therefore:
[tex]\[ 3m^2 - 3 = 3(m - 1)(m + 1) \][/tex]
4. Simplify the overall expression:
Substitute the factored form back into the original function:
[tex]\[ \frac{3(m - 1)(m + 1)}{m - 1} \][/tex]
Now, if [tex]\( m \neq 1 \)[/tex], we can cancel the common factor of [tex]\( m - 1 \)[/tex]:
[tex]\[ \frac{3 \cancel{(m - 1)} (m + 1)}{\cancel{m - 1}} = 3(m + 1) \][/tex]
5. Evaluate the limit of the simplified expression as [tex]\( m \to 1 \)[/tex]:
Now, as [tex]\( m \)[/tex] approaches 1:
[tex]\[ \lim_{m \to 1} 3(m + 1) = 3(1 + 1) = 3 \cdot 2 = 6 \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} = 6 \][/tex]
So, the result is 6.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.