At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure! Let's find the limit of the function [tex]\(\frac{3m^2 - 3}{m - 1}\)[/tex] as [tex]\( m \)[/tex] approaches 1.
1. Identify the function and the limit to be evaluated:
We need to evaluate:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} \][/tex]
2. Assess direct substitution:
Start by substituting [tex]\( m = 1 \)[/tex] directly into the function:
[tex]\[ \frac{3(1)^2 - 3}{1 - 1} = \frac{3 - 3}{0} = \frac{0}{0} \][/tex]
The result is an indeterminate form, [tex]\( \frac{0}{0} \)[/tex]. Therefore, we need to use algebraic manipulation to simplify the expression.
3. Factor the numerator, if possible:
Factor the numerator [tex]\( 3m^2 - 3 \)[/tex]:
[tex]\[ 3m^2 - 3 = 3(m^2 - 1) \][/tex]
Notice that [tex]\( m^2 - 1 \)[/tex] can be factored further as a difference of squares:
[tex]\[ m^2 - 1 = (m - 1)(m + 1) \][/tex]
Therefore:
[tex]\[ 3m^2 - 3 = 3(m - 1)(m + 1) \][/tex]
4. Simplify the overall expression:
Substitute the factored form back into the original function:
[tex]\[ \frac{3(m - 1)(m + 1)}{m - 1} \][/tex]
Now, if [tex]\( m \neq 1 \)[/tex], we can cancel the common factor of [tex]\( m - 1 \)[/tex]:
[tex]\[ \frac{3 \cancel{(m - 1)} (m + 1)}{\cancel{m - 1}} = 3(m + 1) \][/tex]
5. Evaluate the limit of the simplified expression as [tex]\( m \to 1 \)[/tex]:
Now, as [tex]\( m \)[/tex] approaches 1:
[tex]\[ \lim_{m \to 1} 3(m + 1) = 3(1 + 1) = 3 \cdot 2 = 6 \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} = 6 \][/tex]
So, the result is 6.
1. Identify the function and the limit to be evaluated:
We need to evaluate:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} \][/tex]
2. Assess direct substitution:
Start by substituting [tex]\( m = 1 \)[/tex] directly into the function:
[tex]\[ \frac{3(1)^2 - 3}{1 - 1} = \frac{3 - 3}{0} = \frac{0}{0} \][/tex]
The result is an indeterminate form, [tex]\( \frac{0}{0} \)[/tex]. Therefore, we need to use algebraic manipulation to simplify the expression.
3. Factor the numerator, if possible:
Factor the numerator [tex]\( 3m^2 - 3 \)[/tex]:
[tex]\[ 3m^2 - 3 = 3(m^2 - 1) \][/tex]
Notice that [tex]\( m^2 - 1 \)[/tex] can be factored further as a difference of squares:
[tex]\[ m^2 - 1 = (m - 1)(m + 1) \][/tex]
Therefore:
[tex]\[ 3m^2 - 3 = 3(m - 1)(m + 1) \][/tex]
4. Simplify the overall expression:
Substitute the factored form back into the original function:
[tex]\[ \frac{3(m - 1)(m + 1)}{m - 1} \][/tex]
Now, if [tex]\( m \neq 1 \)[/tex], we can cancel the common factor of [tex]\( m - 1 \)[/tex]:
[tex]\[ \frac{3 \cancel{(m - 1)} (m + 1)}{\cancel{m - 1}} = 3(m + 1) \][/tex]
5. Evaluate the limit of the simplified expression as [tex]\( m \to 1 \)[/tex]:
Now, as [tex]\( m \)[/tex] approaches 1:
[tex]\[ \lim_{m \to 1} 3(m + 1) = 3(1 + 1) = 3 \cdot 2 = 6 \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{m \to 1} \frac{3m^2 - 3}{m - 1} = 6 \][/tex]
So, the result is 6.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.