Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's understand and solve the problem step-by-step.
The height of the soccer ball as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[ h(t) = -16t^2 + 32t \][/tex]
To determine when the soccer ball is moving through the air, we need to find the time interval during which the height [tex]\( h(t) \)[/tex] is greater than zero.
### Step 1: Find when the ball touches the ground
The ball touches the ground when [tex]\( h(t) = 0 \)[/tex]. So solve for [tex]\( t \)[/tex] such that:
[tex]\[ -16t^2 + 32t = 0 \][/tex]
Factorizing the equation, we get:
[tex]\[ -16t(t - 2) = 0 \][/tex]
This gives us two solutions:
[tex]\[ t = 0 \quad \text{or} \quad t = 2 \][/tex]
### Step 2: Determine the time interval when the ball is in the air
From the solutions above, [tex]\( t = 0 \)[/tex] corresponds to the initial time when the ball is kicked from the ground, and [tex]\( t = 2 \)[/tex] corresponds to the time when the ball returns to the ground.
Therefore, the soccer ball is in the air from [tex]\( t = 0 \)[/tex] to [tex]\( t = 2 \)[/tex], but not including these points since at those times, the height is zero.
### Conclusion
The correct interval during which the soccer ball is moving through the air is:
[tex]\[ \{ t \mid 0 < t < 2 \} \][/tex]
So, the correct answer is:
[tex]\[ \{t \mid 0 < t < 2\} \][/tex]
The height of the soccer ball as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[ h(t) = -16t^2 + 32t \][/tex]
To determine when the soccer ball is moving through the air, we need to find the time interval during which the height [tex]\( h(t) \)[/tex] is greater than zero.
### Step 1: Find when the ball touches the ground
The ball touches the ground when [tex]\( h(t) = 0 \)[/tex]. So solve for [tex]\( t \)[/tex] such that:
[tex]\[ -16t^2 + 32t = 0 \][/tex]
Factorizing the equation, we get:
[tex]\[ -16t(t - 2) = 0 \][/tex]
This gives us two solutions:
[tex]\[ t = 0 \quad \text{or} \quad t = 2 \][/tex]
### Step 2: Determine the time interval when the ball is in the air
From the solutions above, [tex]\( t = 0 \)[/tex] corresponds to the initial time when the ball is kicked from the ground, and [tex]\( t = 2 \)[/tex] corresponds to the time when the ball returns to the ground.
Therefore, the soccer ball is in the air from [tex]\( t = 0 \)[/tex] to [tex]\( t = 2 \)[/tex], but not including these points since at those times, the height is zero.
### Conclusion
The correct interval during which the soccer ball is moving through the air is:
[tex]\[ \{ t \mid 0 < t < 2 \} \][/tex]
So, the correct answer is:
[tex]\[ \{t \mid 0 < t < 2\} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.