Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Question 4

Find the amplitude and period of the function
[tex]\[ y = \frac{1}{2} \sin 3x \][/tex]

Give the exact values, not decimal approximations.

Amplitude: [tex]\(\square\)[/tex]

Period: [tex]\(\square\)[/tex]


Sagot :

Let's break down how to find the amplitude and period of the function [tex]\( y = \frac{1}{2} \sin(3x) \)[/tex].

### Step-by-Step Solution

1. Given Function:
[tex]\[ y = \frac{1}{2} \sin(3x) \][/tex]

2. Amplitude:
The amplitude of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is given by the coefficient [tex]\( A \)[/tex] in front of the sine term.
In our function, [tex]\( A = \frac{1}{2} \)[/tex].

Therefore, the amplitude is
[tex]\[ A = \frac{1}{2} \][/tex]

3. Period:
The period of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is determined by the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex]. The formula for the period [tex]\( T \)[/tex] is
[tex]\[ T = \frac{2\pi}{B} \][/tex]
In our function, [tex]\( B = 3 \)[/tex].

Therefore, the period is
[tex]\[ T = \frac{2\pi}{3} \][/tex]

### Summary

- Amplitude:
[tex]\[ \frac{1}{2} \][/tex]

- Period:
[tex]\[ \frac{2\pi}{3} \][/tex]

### Final Answer

Therefore, the exact values are:
- Amplitude: [tex]\(\frac{1}{2}\)[/tex]
- Period: [tex]\(\frac{2\pi}{3}\)[/tex]