Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the given functions one by one to determine their ranges and identify which one has the range [tex]\(\{y \mid y \leq 5\}\)[/tex].
1. Function [tex]\( f(x) = (x-4)^2 + 5 \)[/tex]
- This is a quadratic function that opens upwards (since the coefficient of [tex]\( (x-4)^2 \)[/tex] is positive).
- The vertex of this parabola is at [tex]\( (4, 5) \)[/tex]. Since it opens upwards, the minimum value of [tex]\( f(x) \)[/tex] is [tex]\( 5 \)[/tex], and as [tex]\( x \)[/tex] moves away from [tex]\( 4 \)[/tex], the value of [tex]\( f(x) \)[/tex] increases.
- Therefore, the range of this function is [tex]\( [5, \infty) \)[/tex].
2. Function [tex]\( f(x) = -(x-4)^2 + 5 \)[/tex]
- This is a quadratic function that opens downwards (since the coefficient of [tex]\( (x-4)^2 \)[/tex] is negative).
- The vertex of this parabola is at [tex]\( (4, 5) \)[/tex]. Since it opens downwards, the maximum value of [tex]\( f(x) \)[/tex] is [tex]\( 5 \)[/tex], and as [tex]\( x \)[/tex] moves away from [tex]\( 4 \)[/tex], the value of [tex]\( f(x) \)[/tex] decreases.
- Therefore, the range of this function is [tex]\( (-\infty, 5] \)[/tex].
3. Function [tex]\( f(x) = (x-5)^2 + 4 \)[/tex]
- This is a quadratic function that opens upwards (since the coefficient of [tex]\( (x-5)^2 \)[/tex] is positive).
- The vertex of this parabola is at [tex]\( (5, 4) \)[/tex]. Since it opens upwards, the minimum value of [tex]\( f(x) \)[/tex] is [tex]\( 4 \)[/tex], and as [tex]\( x \)[/tex] moves away from [tex]\( 5 \)[/tex], the value of [tex]\( f(x) \)[/tex] increases.
- Therefore, the range of this function is [tex]\( [4, \infty) \)[/tex].
4. Function [tex]\( f(x) = -(x-5)^2 + 4 \)[/tex]
- This is a quadratic function that opens downwards (since the coefficient of [tex]\( (x-5)^2 \)[/tex] is negative).
- The vertex of this parabola is at [tex]\( (5, 4) \)[/tex]. Since it opens downwards, the maximum value of [tex]\( f(x) \)[/tex] is [tex]\( 4 \)[/tex], and as [tex]\( x \)[/tex] moves away from [tex]\( 5 \)[/tex], the value of [tex]\( f(x) \)[/tex] decreases.
- Therefore, the range of this function is [tex]\( (-\infty, 4] \)[/tex].
Given these analyses, the function which has the range [tex]\(\{y \mid y \leq 5\}\)[/tex] is:
[tex]\[ f(x) = -(x-4)^2 + 5 \][/tex]
So, the function is:
[tex]\[ \boxed{f(x) = -(x-4)^2 + 5} \][/tex]
1. Function [tex]\( f(x) = (x-4)^2 + 5 \)[/tex]
- This is a quadratic function that opens upwards (since the coefficient of [tex]\( (x-4)^2 \)[/tex] is positive).
- The vertex of this parabola is at [tex]\( (4, 5) \)[/tex]. Since it opens upwards, the minimum value of [tex]\( f(x) \)[/tex] is [tex]\( 5 \)[/tex], and as [tex]\( x \)[/tex] moves away from [tex]\( 4 \)[/tex], the value of [tex]\( f(x) \)[/tex] increases.
- Therefore, the range of this function is [tex]\( [5, \infty) \)[/tex].
2. Function [tex]\( f(x) = -(x-4)^2 + 5 \)[/tex]
- This is a quadratic function that opens downwards (since the coefficient of [tex]\( (x-4)^2 \)[/tex] is negative).
- The vertex of this parabola is at [tex]\( (4, 5) \)[/tex]. Since it opens downwards, the maximum value of [tex]\( f(x) \)[/tex] is [tex]\( 5 \)[/tex], and as [tex]\( x \)[/tex] moves away from [tex]\( 4 \)[/tex], the value of [tex]\( f(x) \)[/tex] decreases.
- Therefore, the range of this function is [tex]\( (-\infty, 5] \)[/tex].
3. Function [tex]\( f(x) = (x-5)^2 + 4 \)[/tex]
- This is a quadratic function that opens upwards (since the coefficient of [tex]\( (x-5)^2 \)[/tex] is positive).
- The vertex of this parabola is at [tex]\( (5, 4) \)[/tex]. Since it opens upwards, the minimum value of [tex]\( f(x) \)[/tex] is [tex]\( 4 \)[/tex], and as [tex]\( x \)[/tex] moves away from [tex]\( 5 \)[/tex], the value of [tex]\( f(x) \)[/tex] increases.
- Therefore, the range of this function is [tex]\( [4, \infty) \)[/tex].
4. Function [tex]\( f(x) = -(x-5)^2 + 4 \)[/tex]
- This is a quadratic function that opens downwards (since the coefficient of [tex]\( (x-5)^2 \)[/tex] is negative).
- The vertex of this parabola is at [tex]\( (5, 4) \)[/tex]. Since it opens downwards, the maximum value of [tex]\( f(x) \)[/tex] is [tex]\( 4 \)[/tex], and as [tex]\( x \)[/tex] moves away from [tex]\( 5 \)[/tex], the value of [tex]\( f(x) \)[/tex] decreases.
- Therefore, the range of this function is [tex]\( (-\infty, 4] \)[/tex].
Given these analyses, the function which has the range [tex]\(\{y \mid y \leq 5\}\)[/tex] is:
[tex]\[ f(x) = -(x-4)^2 + 5 \][/tex]
So, the function is:
[tex]\[ \boxed{f(x) = -(x-4)^2 + 5} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.