Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's determine the vertical translation from the graph of the parent function [tex]\(f(x) = x^2\)[/tex] to the graph of the function [tex]\(g(x) = (x + 5)^2 + 3\)[/tex].
1. Identify the Parent Function and the Given Function:
- The parent function is [tex]\( f(x) = x^2 \)[/tex].
- The given function is [tex]\( g(x) = (x + 5)^2 + 3 \)[/tex].
2. Analyze the Transformations Involved:
- The function [tex]\( g(x) = (x + 5)^2 + 3 \)[/tex] has two obvious transformations from the parent function [tex]\( f(x) = x^2 \)[/tex]:
- The term [tex]\( (x + 5) \)[/tex] inside the squared term indicates a horizontal shift.
- The term [tex]\( +3 \)[/tex] outside the squared term indicates a vertical shift.
3. Focus on Vertical Translations:
- We are interested in the vertical translation, which is indicated by the constant term added outside the squared term.
4. Determine the Vertical Translation:
- The term [tex]\( +3 \)[/tex] outside of the squared term moves the graph of the function upward by 3 units.
Therefore, the value that represents the vertical translation from the graph of the parent function [tex]\( f(x) = x^2 \)[/tex] to the graph of the function [tex]\( g(x) = (x + 5)^2 + 3 \)[/tex] is [tex]\( \boxed{3} \)[/tex].
1. Identify the Parent Function and the Given Function:
- The parent function is [tex]\( f(x) = x^2 \)[/tex].
- The given function is [tex]\( g(x) = (x + 5)^2 + 3 \)[/tex].
2. Analyze the Transformations Involved:
- The function [tex]\( g(x) = (x + 5)^2 + 3 \)[/tex] has two obvious transformations from the parent function [tex]\( f(x) = x^2 \)[/tex]:
- The term [tex]\( (x + 5) \)[/tex] inside the squared term indicates a horizontal shift.
- The term [tex]\( +3 \)[/tex] outside the squared term indicates a vertical shift.
3. Focus on Vertical Translations:
- We are interested in the vertical translation, which is indicated by the constant term added outside the squared term.
4. Determine the Vertical Translation:
- The term [tex]\( +3 \)[/tex] outside of the squared term moves the graph of the function upward by 3 units.
Therefore, the value that represents the vertical translation from the graph of the parent function [tex]\( f(x) = x^2 \)[/tex] to the graph of the function [tex]\( g(x) = (x + 5)^2 + 3 \)[/tex] is [tex]\( \boxed{3} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.