At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's determine the equation of the translated function [tex]\( g(x) \)[/tex] if the original function is [tex]\( f(x) = x^2 \)[/tex].
We are given several options for the translated function [tex]\( g(x) \)[/tex]:
1. [tex]\( g(x) = (x-4)^2 + 6 \)[/tex]
2. [tex]\( g(x) = (x+6)^2 - 4 \)[/tex]
3. [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
4. [tex]\( g(x) = (x+4)^2 + 6 \)[/tex]
### Step-by-Step Analysis:
1. Understanding Transformations:
- A translation of the form [tex]\( f(x - h) \)[/tex] shifts the graph horizontally by [tex]\( h \)[/tex] units.
- If [tex]\( h \)[/tex] is positive, the shift is to the right.
- If [tex]\( h \)[/tex] is negative, the shift is to the left.
- A translation of the form [tex]\( f(x) + k \)[/tex] shifts the graph vertically by [tex]\( k \)[/tex] units.
- If [tex]\( k \)[/tex] is positive, the shift is upward.
- If [tex]\( k \)[/tex] is negative, the shift is downward.
2. Analyzing Each Option:
- Option 1: [tex]\( g(x) = (x-4)^2 + 6 \)[/tex]
- This represents a shift 4 units to the right ("-4") and 6 units up ("+6").
- Option 2: [tex]\( g(x) = (x+6)^2 - 4 \)[/tex]
- This represents a shift 6 units to the left ("+6") and 4 units down ("-4").
- Option 3: [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
- This represents a shift 6 units to the right ("-6") and 4 units down ("-4").
- Option 4: [tex]\( g(x) = (x+4)^2 + 6 \)[/tex]
- This represents a shift 4 units to the left ("+4") and 6 units up ("+6").
3. Selecting the Correct Option:
- Based on the transformations analyzed, the option that translates the original function [tex]\( f(x) = x^2 \)[/tex] by shifting 6 units to the right and 4 units down is:
- [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
Therefore, the equation of the translated function [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = (x-6)^2 - 4 \][/tex]
This corresponds to Option 3.
We are given several options for the translated function [tex]\( g(x) \)[/tex]:
1. [tex]\( g(x) = (x-4)^2 + 6 \)[/tex]
2. [tex]\( g(x) = (x+6)^2 - 4 \)[/tex]
3. [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
4. [tex]\( g(x) = (x+4)^2 + 6 \)[/tex]
### Step-by-Step Analysis:
1. Understanding Transformations:
- A translation of the form [tex]\( f(x - h) \)[/tex] shifts the graph horizontally by [tex]\( h \)[/tex] units.
- If [tex]\( h \)[/tex] is positive, the shift is to the right.
- If [tex]\( h \)[/tex] is negative, the shift is to the left.
- A translation of the form [tex]\( f(x) + k \)[/tex] shifts the graph vertically by [tex]\( k \)[/tex] units.
- If [tex]\( k \)[/tex] is positive, the shift is upward.
- If [tex]\( k \)[/tex] is negative, the shift is downward.
2. Analyzing Each Option:
- Option 1: [tex]\( g(x) = (x-4)^2 + 6 \)[/tex]
- This represents a shift 4 units to the right ("-4") and 6 units up ("+6").
- Option 2: [tex]\( g(x) = (x+6)^2 - 4 \)[/tex]
- This represents a shift 6 units to the left ("+6") and 4 units down ("-4").
- Option 3: [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
- This represents a shift 6 units to the right ("-6") and 4 units down ("-4").
- Option 4: [tex]\( g(x) = (x+4)^2 + 6 \)[/tex]
- This represents a shift 4 units to the left ("+4") and 6 units up ("+6").
3. Selecting the Correct Option:
- Based on the transformations analyzed, the option that translates the original function [tex]\( f(x) = x^2 \)[/tex] by shifting 6 units to the right and 4 units down is:
- [tex]\( g(x) = (x-6)^2 - 4 \)[/tex]
Therefore, the equation of the translated function [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = (x-6)^2 - 4 \][/tex]
This corresponds to Option 3.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.