At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem of finding the velocity of the object at [tex]\( t = 2 \)[/tex] seconds given the acceleration function and initial velocity, we follow these steps:
1. Define the acceleration function [tex]\( a(t) \)[/tex]:
Given the acceleration function [tex]\( a(t) = (3t + 3)^{-4} \)[/tex].
2. Integrate the acceleration function to find the velocity function [tex]\( v(t) \)[/tex]:
To find the velocity function [tex]\( v(t) \)[/tex], we need to integrate the acceleration function with respect to time [tex]\( t \)[/tex]:
[tex]\[ v(t) = \int a(t) \, dt = \int (3t + 3)^{-4} \, dt \][/tex]
3. Perform the integration:
Integrate [tex]\( \int (3t + 3)^{-4} \, dt \)[/tex]. This can be done using integration techniques such as substitution.
Let [tex]\( u = 3t + 3 \)[/tex], hence [tex]\( du = 3 \, dt \)[/tex] or [tex]\( dt = \frac{du}{3} \)[/tex].
Substituting in, we get:
[tex]\[ \int (3t + 3)^{-4} \, dt = \int u^{-4} \, \frac{du}{3} = \frac{1}{3} \int u^{-4} \, du \][/tex]
The integral of [tex]\( u^{-4} \)[/tex] is:
[tex]\[ \int u^{-4} \, du = \frac{u^{-3}}{-3} = -\frac{1}{3} u^{-3} \][/tex]
Substituting back [tex]\( u = 3t + 3 \)[/tex]:
[tex]\[ -\frac{1}{3} \cdot \frac{1}{3(3t + 3)^3} = -\frac{1}{9(3t + 3)^3} \][/tex]
Therefore, the velocity function [tex]\( v(t) \)[/tex] is:
[tex]\[ v(t) = -\frac{1}{9(3t + 3)^3} + C \][/tex]
4. Determine the constant of integration [tex]\( C \)[/tex] using the initial condition:
Given that the velocity at [tex]\( t = 0 \)[/tex] is 4 meters per second:
[tex]\[ v(0) = 4 = -\frac{1}{9(3 \cdot 0 + 3)^3} + C = -\frac{1}{9 \cdot 27} + C = -\frac{1}{243} + C \][/tex]
Solving for [tex]\( C \)[/tex]:
[tex]\[ 4 = -\frac{1}{243} + C \implies C = 4 + \frac{1}{243} = \frac{972 + 1}{243} = \frac{973}{243} \][/tex]
Therefore, the function [tex]\( v(t) \)[/tex] becomes:
[tex]\[ v(t) = -\frac{1}{9(3t + 3)^3} + \frac{973}{243} \][/tex]
5. Calculate the velocity at [tex]\( t = 2 \)[/tex]:
Substitute [tex]\( t = 2 \)[/tex] into the velocity function:
[tex]\[ v(2) = -\frac{1}{9(3 \cdot 2 + 3)^3} + \frac{973}{243} = -\frac{1}{9 \cdot (6 + 3)^3} + \frac{973}{243} = -\frac{1}{9 \cdot 729} + \frac{973}{243} = -\frac{1}{6561} + \frac{973}{243} \][/tex]
Find a common denominator for these fractions:
[tex]\[ \frac{-1}{6561} + \frac{973 \cdot 27}{6561} = \frac{-1 + 26271}{6561} = \frac{26243}{6561} \][/tex]
6. Simplify and round to six decimal places:
Simplifying the fraction [tex]\(\frac{26243}{6561}\)[/tex] and converting to decimal form:
[tex]\[ v(2) \approx 3.999848 \][/tex]
Therefore, the velocity of the object 2 seconds later is approximately [tex]\(3.999848\)[/tex] meters per second.
1. Define the acceleration function [tex]\( a(t) \)[/tex]:
Given the acceleration function [tex]\( a(t) = (3t + 3)^{-4} \)[/tex].
2. Integrate the acceleration function to find the velocity function [tex]\( v(t) \)[/tex]:
To find the velocity function [tex]\( v(t) \)[/tex], we need to integrate the acceleration function with respect to time [tex]\( t \)[/tex]:
[tex]\[ v(t) = \int a(t) \, dt = \int (3t + 3)^{-4} \, dt \][/tex]
3. Perform the integration:
Integrate [tex]\( \int (3t + 3)^{-4} \, dt \)[/tex]. This can be done using integration techniques such as substitution.
Let [tex]\( u = 3t + 3 \)[/tex], hence [tex]\( du = 3 \, dt \)[/tex] or [tex]\( dt = \frac{du}{3} \)[/tex].
Substituting in, we get:
[tex]\[ \int (3t + 3)^{-4} \, dt = \int u^{-4} \, \frac{du}{3} = \frac{1}{3} \int u^{-4} \, du \][/tex]
The integral of [tex]\( u^{-4} \)[/tex] is:
[tex]\[ \int u^{-4} \, du = \frac{u^{-3}}{-3} = -\frac{1}{3} u^{-3} \][/tex]
Substituting back [tex]\( u = 3t + 3 \)[/tex]:
[tex]\[ -\frac{1}{3} \cdot \frac{1}{3(3t + 3)^3} = -\frac{1}{9(3t + 3)^3} \][/tex]
Therefore, the velocity function [tex]\( v(t) \)[/tex] is:
[tex]\[ v(t) = -\frac{1}{9(3t + 3)^3} + C \][/tex]
4. Determine the constant of integration [tex]\( C \)[/tex] using the initial condition:
Given that the velocity at [tex]\( t = 0 \)[/tex] is 4 meters per second:
[tex]\[ v(0) = 4 = -\frac{1}{9(3 \cdot 0 + 3)^3} + C = -\frac{1}{9 \cdot 27} + C = -\frac{1}{243} + C \][/tex]
Solving for [tex]\( C \)[/tex]:
[tex]\[ 4 = -\frac{1}{243} + C \implies C = 4 + \frac{1}{243} = \frac{972 + 1}{243} = \frac{973}{243} \][/tex]
Therefore, the function [tex]\( v(t) \)[/tex] becomes:
[tex]\[ v(t) = -\frac{1}{9(3t + 3)^3} + \frac{973}{243} \][/tex]
5. Calculate the velocity at [tex]\( t = 2 \)[/tex]:
Substitute [tex]\( t = 2 \)[/tex] into the velocity function:
[tex]\[ v(2) = -\frac{1}{9(3 \cdot 2 + 3)^3} + \frac{973}{243} = -\frac{1}{9 \cdot (6 + 3)^3} + \frac{973}{243} = -\frac{1}{9 \cdot 729} + \frac{973}{243} = -\frac{1}{6561} + \frac{973}{243} \][/tex]
Find a common denominator for these fractions:
[tex]\[ \frac{-1}{6561} + \frac{973 \cdot 27}{6561} = \frac{-1 + 26271}{6561} = \frac{26243}{6561} \][/tex]
6. Simplify and round to six decimal places:
Simplifying the fraction [tex]\(\frac{26243}{6561}\)[/tex] and converting to decimal form:
[tex]\[ v(2) \approx 3.999848 \][/tex]
Therefore, the velocity of the object 2 seconds later is approximately [tex]\(3.999848\)[/tex] meters per second.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.