Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the dot product of the vectors [tex]\((-2, 7)\)[/tex] and [tex]\((-4, 7)\)[/tex], we follow these steps:
1. Identify the components of each vector:
- The first vector [tex]\(\mathbf{A}\)[/tex] has components [tex]\(A_x = -2\)[/tex] and [tex]\(A_y = 7\)[/tex].
- The second vector [tex]\(\mathbf{B}\)[/tex] has components [tex]\(B_x = -4\)[/tex] and [tex]\(B_y = 7\)[/tex].
2. Use the formula for the dot product of two vectors:
The dot product of vectors [tex]\(\mathbf{A} = (A_x, A_y)\)[/tex] and [tex]\(\mathbf{B} = (B_x, B_y)\)[/tex] is given by:
[tex]\[ \mathbf{A} \cdot \mathbf{B} = A_x \cdot B_x + A_y \cdot B_y \][/tex]
3. Substitute the components into the formula:
- For [tex]\(A_x \cdot B_x\)[/tex], we have:
[tex]\[ -2 \cdot -4 = 8 \][/tex]
- For [tex]\(A_y \cdot B_y\)[/tex], we have:
[tex]\[ 7 \cdot 7 = 49 \][/tex]
4. Add these products together:
[tex]\[ \mathbf{A} \cdot \mathbf{B} = 8 + 49 \][/tex]
[tex]\[ \mathbf{A} \cdot \mathbf{B} = 57 \][/tex]
Therefore, the dot product of the vectors [tex]\((-2, 7)\)[/tex] and [tex]\((-4, 7)\)[/tex] is [tex]\(57\)[/tex].
1. Identify the components of each vector:
- The first vector [tex]\(\mathbf{A}\)[/tex] has components [tex]\(A_x = -2\)[/tex] and [tex]\(A_y = 7\)[/tex].
- The second vector [tex]\(\mathbf{B}\)[/tex] has components [tex]\(B_x = -4\)[/tex] and [tex]\(B_y = 7\)[/tex].
2. Use the formula for the dot product of two vectors:
The dot product of vectors [tex]\(\mathbf{A} = (A_x, A_y)\)[/tex] and [tex]\(\mathbf{B} = (B_x, B_y)\)[/tex] is given by:
[tex]\[ \mathbf{A} \cdot \mathbf{B} = A_x \cdot B_x + A_y \cdot B_y \][/tex]
3. Substitute the components into the formula:
- For [tex]\(A_x \cdot B_x\)[/tex], we have:
[tex]\[ -2 \cdot -4 = 8 \][/tex]
- For [tex]\(A_y \cdot B_y\)[/tex], we have:
[tex]\[ 7 \cdot 7 = 49 \][/tex]
4. Add these products together:
[tex]\[ \mathbf{A} \cdot \mathbf{B} = 8 + 49 \][/tex]
[tex]\[ \mathbf{A} \cdot \mathbf{B} = 57 \][/tex]
Therefore, the dot product of the vectors [tex]\((-2, 7)\)[/tex] and [tex]\((-4, 7)\)[/tex] is [tex]\(57\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.