Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine whether being from Texas and preferring brand A are independent events, we need to compare the probability of being from Texas [tex]\( P(\text{Texas}) \)[/tex] with the probability of being from Texas given that the person prefers brand A [tex]\( P(\text{Texas} \mid \text{Brand A}) \)[/tex].
1. Calculate [tex]\( P(\text{Texas}) \)[/tex]:
The total number of respondents is 275. Out of these, 125 are from Texas.
[tex]\[ P(\text{Texas}) = \frac{\text{Number of respondents from Texas}}{\text{Total number of respondents}} = \frac{125}{275} \approx 0.4545 \][/tex]
2. Calculate [tex]\( P(\text{Texas} \mid \text{Brand A}) \)[/tex]:
To find [tex]\( P(\text{Texas} \mid \text{Brand A}) \)[/tex], we look at the number of people who prefer brand A, which is 176, and out of those, the number of people from Texas who prefer brand A, which is 80.
[tex]\[ P(\text{Texas} \mid \text{Brand A}) = \frac{\text{Number of Texas respondents who prefer Brand A}}{\text{Total number of respondents who prefer Brand A}} = \frac{80}{176} \approx 0.4545 \][/tex]
3. Compare the probabilities:
[tex]\[ P(\text{Texas}) \approx 0.4545 \][/tex]
[tex]\[ P(\text{Texas} \mid \text{Brand A}) \approx 0.4545 \][/tex]
Since [tex]\( P(\text{Texas}) \approx P(\text{Texas} \mid \text{Brand A}) \)[/tex], being from Texas and preferring brand A are independent events. Therefore, the correct answer is:
C. Yes, they are independent because [tex]\( P(\text{Texas}) \approx 0.45 \)[/tex] and [tex]\( P(\text{Texas} \mid \text{Brand A}) \approx 0.45 \)[/tex].
1. Calculate [tex]\( P(\text{Texas}) \)[/tex]:
The total number of respondents is 275. Out of these, 125 are from Texas.
[tex]\[ P(\text{Texas}) = \frac{\text{Number of respondents from Texas}}{\text{Total number of respondents}} = \frac{125}{275} \approx 0.4545 \][/tex]
2. Calculate [tex]\( P(\text{Texas} \mid \text{Brand A}) \)[/tex]:
To find [tex]\( P(\text{Texas} \mid \text{Brand A}) \)[/tex], we look at the number of people who prefer brand A, which is 176, and out of those, the number of people from Texas who prefer brand A, which is 80.
[tex]\[ P(\text{Texas} \mid \text{Brand A}) = \frac{\text{Number of Texas respondents who prefer Brand A}}{\text{Total number of respondents who prefer Brand A}} = \frac{80}{176} \approx 0.4545 \][/tex]
3. Compare the probabilities:
[tex]\[ P(\text{Texas}) \approx 0.4545 \][/tex]
[tex]\[ P(\text{Texas} \mid \text{Brand A}) \approx 0.4545 \][/tex]
Since [tex]\( P(\text{Texas}) \approx P(\text{Texas} \mid \text{Brand A}) \)[/tex], being from Texas and preferring brand A are independent events. Therefore, the correct answer is:
C. Yes, they are independent because [tex]\( P(\text{Texas}) \approx 0.45 \)[/tex] and [tex]\( P(\text{Texas} \mid \text{Brand A}) \approx 0.45 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.