Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the range of the function [tex]\( f(x) = \sqrt{x - 8} + 6 \)[/tex], we'll follow a step-by-step process:
1. Domain Determination:
- First, recognize that inside a square root function, the expression must be non-negative. That is, we need [tex]\( x - 8 \geq 0 \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x \geq 8 \)[/tex].
2. Behavior of the Function:
- Let's examine [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = \sqrt{8 - 8} + 6 = \sqrt{0} + 6 = 6 \][/tex]
- As [tex]\( x \)[/tex] increases beyond 8, [tex]\( x - 8 \)[/tex] becomes positive and grows larger.
- The square root function [tex]\( \sqrt{x - 8} \)[/tex] will yield non-negative values because the square root of a non-negative number is also non-negative.
3. Range Calculation:
- The smallest value of the square root function [tex]\( \sqrt{x - 8} \)[/tex] when [tex]\( x = 8 \)[/tex] is 0, which makes the minimum value of [tex]\( f(x) \)[/tex]: [tex]\( 0 + 6 = 6 \)[/tex].
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x - 8} \)[/tex] can take any non-negative value, becoming larger with increasing [tex]\( x \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] can take any value starting from 6 and increasing without bound.
- In other words, [tex]\( f(x) \geq 6 \)[/tex].
So, the range of the function [tex]\( f(x) = \sqrt{x - 8} + 6 \)[/tex] is:
[tex]\[ f(x) \geq 6 \][/tex]
Among the given options, the correct answer is:
[tex]\[ f(x) \geq 6 \][/tex]
This corresponds to the third option:
[tex]\[ f(x) \geq 6 \][/tex]
1. Domain Determination:
- First, recognize that inside a square root function, the expression must be non-negative. That is, we need [tex]\( x - 8 \geq 0 \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x \geq 8 \)[/tex].
2. Behavior of the Function:
- Let's examine [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = \sqrt{8 - 8} + 6 = \sqrt{0} + 6 = 6 \][/tex]
- As [tex]\( x \)[/tex] increases beyond 8, [tex]\( x - 8 \)[/tex] becomes positive and grows larger.
- The square root function [tex]\( \sqrt{x - 8} \)[/tex] will yield non-negative values because the square root of a non-negative number is also non-negative.
3. Range Calculation:
- The smallest value of the square root function [tex]\( \sqrt{x - 8} \)[/tex] when [tex]\( x = 8 \)[/tex] is 0, which makes the minimum value of [tex]\( f(x) \)[/tex]: [tex]\( 0 + 6 = 6 \)[/tex].
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x - 8} \)[/tex] can take any non-negative value, becoming larger with increasing [tex]\( x \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] can take any value starting from 6 and increasing without bound.
- In other words, [tex]\( f(x) \geq 6 \)[/tex].
So, the range of the function [tex]\( f(x) = \sqrt{x - 8} + 6 \)[/tex] is:
[tex]\[ f(x) \geq 6 \][/tex]
Among the given options, the correct answer is:
[tex]\[ f(x) \geq 6 \][/tex]
This corresponds to the third option:
[tex]\[ f(x) \geq 6 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.