Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the range of the function [tex]\( f(x) = \sqrt{x - 8} + 6 \)[/tex], we'll follow a step-by-step process:
1. Domain Determination:
- First, recognize that inside a square root function, the expression must be non-negative. That is, we need [tex]\( x - 8 \geq 0 \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x \geq 8 \)[/tex].
2. Behavior of the Function:
- Let's examine [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = \sqrt{8 - 8} + 6 = \sqrt{0} + 6 = 6 \][/tex]
- As [tex]\( x \)[/tex] increases beyond 8, [tex]\( x - 8 \)[/tex] becomes positive and grows larger.
- The square root function [tex]\( \sqrt{x - 8} \)[/tex] will yield non-negative values because the square root of a non-negative number is also non-negative.
3. Range Calculation:
- The smallest value of the square root function [tex]\( \sqrt{x - 8} \)[/tex] when [tex]\( x = 8 \)[/tex] is 0, which makes the minimum value of [tex]\( f(x) \)[/tex]: [tex]\( 0 + 6 = 6 \)[/tex].
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x - 8} \)[/tex] can take any non-negative value, becoming larger with increasing [tex]\( x \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] can take any value starting from 6 and increasing without bound.
- In other words, [tex]\( f(x) \geq 6 \)[/tex].
So, the range of the function [tex]\( f(x) = \sqrt{x - 8} + 6 \)[/tex] is:
[tex]\[ f(x) \geq 6 \][/tex]
Among the given options, the correct answer is:
[tex]\[ f(x) \geq 6 \][/tex]
This corresponds to the third option:
[tex]\[ f(x) \geq 6 \][/tex]
1. Domain Determination:
- First, recognize that inside a square root function, the expression must be non-negative. That is, we need [tex]\( x - 8 \geq 0 \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x \geq 8 \)[/tex].
2. Behavior of the Function:
- Let's examine [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = \sqrt{8 - 8} + 6 = \sqrt{0} + 6 = 6 \][/tex]
- As [tex]\( x \)[/tex] increases beyond 8, [tex]\( x - 8 \)[/tex] becomes positive and grows larger.
- The square root function [tex]\( \sqrt{x - 8} \)[/tex] will yield non-negative values because the square root of a non-negative number is also non-negative.
3. Range Calculation:
- The smallest value of the square root function [tex]\( \sqrt{x - 8} \)[/tex] when [tex]\( x = 8 \)[/tex] is 0, which makes the minimum value of [tex]\( f(x) \)[/tex]: [tex]\( 0 + 6 = 6 \)[/tex].
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x - 8} \)[/tex] can take any non-negative value, becoming larger with increasing [tex]\( x \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] can take any value starting from 6 and increasing without bound.
- In other words, [tex]\( f(x) \geq 6 \)[/tex].
So, the range of the function [tex]\( f(x) = \sqrt{x - 8} + 6 \)[/tex] is:
[tex]\[ f(x) \geq 6 \][/tex]
Among the given options, the correct answer is:
[tex]\[ f(x) \geq 6 \][/tex]
This corresponds to the third option:
[tex]\[ f(x) \geq 6 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.